|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This code is refer from: |
|
https://github.com/ayumiymk/aster.pytorch/blob/master/lib/models/tps_spatial_transformer.py |
|
""" |
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import math |
|
import paddle |
|
from paddle import nn, ParamAttr |
|
from paddle.nn import functional as F |
|
import numpy as np |
|
import itertools |
|
|
|
|
|
def grid_sample(input, grid, canvas=None): |
|
input.stop_gradient = False |
|
output = F.grid_sample(input, grid) |
|
if canvas is None: |
|
return output |
|
else: |
|
input_mask = paddle.ones(shape=input.shape) |
|
output_mask = F.grid_sample(input_mask, grid) |
|
padded_output = output * output_mask + canvas * (1 - output_mask) |
|
return padded_output |
|
|
|
|
|
|
|
def compute_partial_repr(input_points, control_points): |
|
N = input_points.shape[0] |
|
M = control_points.shape[0] |
|
pairwise_diff = paddle.reshape( |
|
input_points, shape=[N, 1, 2]) - paddle.reshape( |
|
control_points, shape=[1, M, 2]) |
|
|
|
|
|
pairwise_diff_square = pairwise_diff * pairwise_diff |
|
pairwise_dist = pairwise_diff_square[:, :, 0] + pairwise_diff_square[:, :, |
|
1] |
|
repr_matrix = 0.5 * pairwise_dist * paddle.log(pairwise_dist) |
|
|
|
mask = np.array(repr_matrix != repr_matrix) |
|
repr_matrix[mask] = 0 |
|
return repr_matrix |
|
|
|
|
|
|
|
def build_output_control_points(num_control_points, margins): |
|
margin_x, margin_y = margins |
|
num_ctrl_pts_per_side = num_control_points // 2 |
|
ctrl_pts_x = np.linspace(margin_x, 1.0 - margin_x, num_ctrl_pts_per_side) |
|
ctrl_pts_y_top = np.ones(num_ctrl_pts_per_side) * margin_y |
|
ctrl_pts_y_bottom = np.ones(num_ctrl_pts_per_side) * (1.0 - margin_y) |
|
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1) |
|
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1) |
|
output_ctrl_pts_arr = np.concatenate( |
|
[ctrl_pts_top, ctrl_pts_bottom], axis=0) |
|
output_ctrl_pts = paddle.to_tensor(output_ctrl_pts_arr) |
|
return output_ctrl_pts |
|
|
|
|
|
class TPSSpatialTransformer(nn.Layer): |
|
def __init__(self, |
|
output_image_size=None, |
|
num_control_points=None, |
|
margins=None): |
|
super(TPSSpatialTransformer, self).__init__() |
|
self.output_image_size = output_image_size |
|
self.num_control_points = num_control_points |
|
self.margins = margins |
|
|
|
self.target_height, self.target_width = output_image_size |
|
target_control_points = build_output_control_points(num_control_points, |
|
margins) |
|
N = num_control_points |
|
|
|
|
|
forward_kernel = paddle.zeros(shape=[N + 3, N + 3]) |
|
target_control_partial_repr = compute_partial_repr( |
|
target_control_points, target_control_points) |
|
target_control_partial_repr = paddle.cast(target_control_partial_repr, |
|
forward_kernel.dtype) |
|
forward_kernel[:N, :N] = target_control_partial_repr |
|
forward_kernel[:N, -3] = 1 |
|
forward_kernel[-3, :N] = 1 |
|
target_control_points = paddle.cast(target_control_points, |
|
forward_kernel.dtype) |
|
forward_kernel[:N, -2:] = target_control_points |
|
forward_kernel[-2:, :N] = paddle.transpose( |
|
target_control_points, perm=[1, 0]) |
|
|
|
inverse_kernel = paddle.inverse(forward_kernel) |
|
|
|
|
|
HW = self.target_height * self.target_width |
|
target_coordinate = list( |
|
itertools.product( |
|
range(self.target_height), range(self.target_width))) |
|
target_coordinate = paddle.to_tensor(target_coordinate) |
|
Y, X = paddle.split( |
|
target_coordinate, target_coordinate.shape[1], axis=1) |
|
Y = Y / (self.target_height - 1) |
|
X = X / (self.target_width - 1) |
|
target_coordinate = paddle.concat( |
|
[X, Y], axis=1) |
|
target_coordinate_partial_repr = compute_partial_repr( |
|
target_coordinate, target_control_points) |
|
target_coordinate_repr = paddle.concat( |
|
[ |
|
target_coordinate_partial_repr, paddle.ones(shape=[HW, 1]), |
|
target_coordinate |
|
], |
|
axis=1) |
|
|
|
|
|
self.inverse_kernel = inverse_kernel |
|
self.padding_matrix = paddle.zeros(shape=[3, 2]) |
|
self.target_coordinate_repr = target_coordinate_repr |
|
self.target_control_points = target_control_points |
|
|
|
def forward(self, input, source_control_points): |
|
assert source_control_points.ndimension() == 3 |
|
assert source_control_points.shape[1] == self.num_control_points |
|
assert source_control_points.shape[2] == 2 |
|
batch_size = paddle.shape(source_control_points)[0] |
|
|
|
padding_matrix = paddle.expand( |
|
self.padding_matrix, shape=[batch_size, 3, 2]) |
|
Y = paddle.concat([source_control_points, padding_matrix], 1) |
|
mapping_matrix = paddle.matmul(self.inverse_kernel, Y) |
|
source_coordinate = paddle.matmul(self.target_coordinate_repr, |
|
mapping_matrix) |
|
|
|
grid = paddle.reshape( |
|
source_coordinate, |
|
shape=[-1, self.target_height, self.target_width, 2]) |
|
grid = paddle.clip(grid, 0, |
|
1) |
|
|
|
grid = 2.0 * grid - 1.0 |
|
output_maps = grid_sample(input, grid, canvas=None) |
|
return output_maps, source_coordinate |