|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This code is refer from: |
|
https://github.com/clovaai/deep-text-recognition-benchmark/blob/master/modules/transformation.py |
|
""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import math |
|
import paddle |
|
from paddle import nn, ParamAttr |
|
from paddle.nn import functional as F |
|
import numpy as np |
|
|
|
|
|
class ConvBNLayer(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
groups=1, |
|
act=None, |
|
name=None): |
|
super(ConvBNLayer, self).__init__() |
|
self.conv = nn.Conv2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=(kernel_size - 1) // 2, |
|
groups=groups, |
|
weight_attr=ParamAttr(name=name + "_weights"), |
|
bias_attr=False) |
|
bn_name = "bn_" + name |
|
self.bn = nn.BatchNorm( |
|
out_channels, |
|
act=act, |
|
param_attr=ParamAttr(name=bn_name + '_scale'), |
|
bias_attr=ParamAttr(bn_name + '_offset'), |
|
moving_mean_name=bn_name + '_mean', |
|
moving_variance_name=bn_name + '_variance') |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.bn(x) |
|
return x |
|
|
|
|
|
class LocalizationNetwork(nn.Layer): |
|
def __init__(self, in_channels, num_fiducial, loc_lr, model_name): |
|
super(LocalizationNetwork, self).__init__() |
|
self.F = num_fiducial |
|
F = num_fiducial |
|
if model_name == "large": |
|
num_filters_list = [64, 128, 256, 512] |
|
fc_dim = 256 |
|
else: |
|
num_filters_list = [16, 32, 64, 128] |
|
fc_dim = 64 |
|
|
|
self.block_list = [] |
|
for fno in range(0, len(num_filters_list)): |
|
num_filters = num_filters_list[fno] |
|
name = "loc_conv%d" % fno |
|
conv = self.add_sublayer( |
|
name, |
|
ConvBNLayer( |
|
in_channels=in_channels, |
|
out_channels=num_filters, |
|
kernel_size=3, |
|
act='relu', |
|
name=name)) |
|
self.block_list.append(conv) |
|
if fno == len(num_filters_list) - 1: |
|
pool = nn.AdaptiveAvgPool2D(1) |
|
else: |
|
pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0) |
|
in_channels = num_filters |
|
self.block_list.append(pool) |
|
name = "loc_fc1" |
|
stdv = 1.0 / math.sqrt(num_filters_list[-1] * 1.0) |
|
self.fc1 = nn.Linear( |
|
in_channels, |
|
fc_dim, |
|
weight_attr=ParamAttr( |
|
learning_rate=loc_lr, |
|
name=name + "_w", |
|
initializer=nn.initializer.Uniform(-stdv, stdv)), |
|
bias_attr=ParamAttr(name=name + '.b_0'), |
|
name=name) |
|
|
|
|
|
initial_bias = self.get_initial_fiducials() |
|
initial_bias = initial_bias.reshape(-1) |
|
name = "loc_fc2" |
|
param_attr = ParamAttr( |
|
learning_rate=loc_lr, |
|
initializer=nn.initializer.Assign(np.zeros([fc_dim, F * 2])), |
|
name=name + "_w") |
|
bias_attr = ParamAttr( |
|
learning_rate=loc_lr, |
|
initializer=nn.initializer.Assign(initial_bias), |
|
name=name + "_b") |
|
self.fc2 = nn.Linear( |
|
fc_dim, |
|
F * 2, |
|
weight_attr=param_attr, |
|
bias_attr=bias_attr, |
|
name=name) |
|
self.out_channels = F * 2 |
|
|
|
def forward(self, x): |
|
""" |
|
Estimating parameters of geometric transformation |
|
Args: |
|
image: input |
|
Return: |
|
batch_C_prime: the matrix of the geometric transformation |
|
""" |
|
B = x.shape[0] |
|
i = 0 |
|
for block in self.block_list: |
|
x = block(x) |
|
x = x.squeeze(axis=2).squeeze(axis=2) |
|
x = self.fc1(x) |
|
|
|
x = F.relu(x) |
|
x = self.fc2(x) |
|
x = x.reshape(shape=[-1, self.F, 2]) |
|
return x |
|
|
|
def get_initial_fiducials(self): |
|
""" see RARE paper Fig. 6 (a) """ |
|
F = self.F |
|
ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2)) |
|
ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(F / 2)) |
|
ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(F / 2)) |
|
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1) |
|
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1) |
|
initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0) |
|
return initial_bias |
|
|
|
|
|
class GridGenerator(nn.Layer): |
|
def __init__(self, in_channels, num_fiducial): |
|
super(GridGenerator, self).__init__() |
|
self.eps = 1e-6 |
|
self.F = num_fiducial |
|
|
|
name = "ex_fc" |
|
initializer = nn.initializer.Constant(value=0.0) |
|
param_attr = ParamAttr( |
|
learning_rate=0.0, initializer=initializer, name=name + "_w") |
|
bias_attr = ParamAttr( |
|
learning_rate=0.0, initializer=initializer, name=name + "_b") |
|
self.fc = nn.Linear( |
|
in_channels, |
|
6, |
|
weight_attr=param_attr, |
|
bias_attr=bias_attr, |
|
name=name) |
|
|
|
def forward(self, batch_C_prime, I_r_size): |
|
""" |
|
Generate the grid for the grid_sampler. |
|
Args: |
|
batch_C_prime: the matrix of the geometric transformation |
|
I_r_size: the shape of the input image |
|
Return: |
|
batch_P_prime: the grid for the grid_sampler |
|
""" |
|
C = self.build_C_paddle() |
|
P = self.build_P_paddle(I_r_size) |
|
|
|
inv_delta_C_tensor = self.build_inv_delta_C_paddle(C).astype('float32') |
|
P_hat_tensor = self.build_P_hat_paddle( |
|
C, paddle.to_tensor(P)).astype('float32') |
|
|
|
inv_delta_C_tensor.stop_gradient = True |
|
P_hat_tensor.stop_gradient = True |
|
|
|
batch_C_ex_part_tensor = self.get_expand_tensor(batch_C_prime) |
|
|
|
batch_C_ex_part_tensor.stop_gradient = True |
|
|
|
batch_C_prime_with_zeros = paddle.concat( |
|
[batch_C_prime, batch_C_ex_part_tensor], axis=1) |
|
batch_T = paddle.matmul(inv_delta_C_tensor, batch_C_prime_with_zeros) |
|
batch_P_prime = paddle.matmul(P_hat_tensor, batch_T) |
|
return batch_P_prime |
|
|
|
def build_C_paddle(self): |
|
""" Return coordinates of fiducial points in I_r; C """ |
|
F = self.F |
|
ctrl_pts_x = paddle.linspace(-1.0, 1.0, int(F / 2), dtype='float64') |
|
ctrl_pts_y_top = -1 * paddle.ones([int(F / 2)], dtype='float64') |
|
ctrl_pts_y_bottom = paddle.ones([int(F / 2)], dtype='float64') |
|
ctrl_pts_top = paddle.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1) |
|
ctrl_pts_bottom = paddle.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1) |
|
C = paddle.concat([ctrl_pts_top, ctrl_pts_bottom], axis=0) |
|
return C |
|
|
|
def build_P_paddle(self, I_r_size): |
|
I_r_height, I_r_width = I_r_size |
|
I_r_grid_x = (paddle.arange( |
|
-I_r_width, I_r_width, 2, dtype='float64') + 1.0 |
|
) / paddle.to_tensor(np.array([I_r_width])) |
|
|
|
I_r_grid_y = (paddle.arange( |
|
-I_r_height, I_r_height, 2, dtype='float64') + 1.0 |
|
) / paddle.to_tensor(np.array([I_r_height])) |
|
|
|
|
|
P = paddle.stack(paddle.meshgrid(I_r_grid_x, I_r_grid_y), axis=2) |
|
P = paddle.transpose(P, perm=[1, 0, 2]) |
|
|
|
return P.reshape([-1, 2]) |
|
|
|
def build_inv_delta_C_paddle(self, C): |
|
""" Return inv_delta_C which is needed to calculate T """ |
|
F = self.F |
|
hat_eye = paddle.eye(F, dtype='float64') |
|
hat_C = paddle.norm( |
|
C.reshape([1, F, 2]) - C.reshape([F, 1, 2]), axis=2) + hat_eye |
|
hat_C = (hat_C**2) * paddle.log(hat_C) |
|
delta_C = paddle.concat( |
|
[ |
|
paddle.concat( |
|
[paddle.ones( |
|
(F, 1), dtype='float64'), C, hat_C], axis=1), |
|
paddle.concat( |
|
[ |
|
paddle.zeros( |
|
(2, 3), dtype='float64'), paddle.transpose( |
|
C, perm=[1, 0]) |
|
], |
|
axis=1), |
|
paddle.concat( |
|
[ |
|
paddle.zeros( |
|
(1, 3), dtype='float64'), paddle.ones( |
|
(1, F), dtype='float64') |
|
], |
|
axis=1) |
|
], |
|
axis=0) |
|
inv_delta_C = paddle.inverse(delta_C) |
|
return inv_delta_C |
|
|
|
def build_P_hat_paddle(self, C, P): |
|
F = self.F |
|
eps = self.eps |
|
n = P.shape[0] |
|
|
|
P_tile = paddle.tile(paddle.unsqueeze(P, axis=1), (1, F, 1)) |
|
C_tile = paddle.unsqueeze(C, axis=0) |
|
P_diff = P_tile - C_tile |
|
|
|
rbf_norm = paddle.norm(P_diff, p=2, axis=2, keepdim=False) |
|
|
|
|
|
rbf = paddle.multiply( |
|
paddle.square(rbf_norm), paddle.log(rbf_norm + eps)) |
|
P_hat = paddle.concat( |
|
[paddle.ones( |
|
(n, 1), dtype='float64'), P, rbf], axis=1) |
|
return P_hat |
|
|
|
def get_expand_tensor(self, batch_C_prime): |
|
B, H, C = batch_C_prime.shape |
|
batch_C_prime = batch_C_prime.reshape([B, H * C]) |
|
batch_C_ex_part_tensor = self.fc(batch_C_prime) |
|
batch_C_ex_part_tensor = batch_C_ex_part_tensor.reshape([-1, 3, 2]) |
|
return batch_C_ex_part_tensor |
|
|
|
|
|
class TPS(nn.Layer): |
|
def __init__(self, in_channels, num_fiducial, loc_lr, model_name): |
|
super(TPS, self).__init__() |
|
self.loc_net = LocalizationNetwork(in_channels, num_fiducial, loc_lr, |
|
model_name) |
|
self.grid_generator = GridGenerator(self.loc_net.out_channels, |
|
num_fiducial) |
|
self.out_channels = in_channels |
|
|
|
def forward(self, image): |
|
image.stop_gradient = False |
|
batch_C_prime = self.loc_net(image) |
|
batch_P_prime = self.grid_generator(batch_C_prime, image.shape[2:]) |
|
batch_P_prime = batch_P_prime.reshape( |
|
[-1, image.shape[2], image.shape[3], 2]) |
|
batch_I_r = F.grid_sample(x=image, grid=batch_P_prime) |
|
return batch_I_r |
|
|