|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import paddle |
|
from paddle import nn |
|
import paddle.nn.functional as F |
|
from paddle import ParamAttr |
|
|
|
|
|
class ConvBNLayer(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride, |
|
groups=1, |
|
if_act=True, |
|
act=None, |
|
name=None): |
|
super(ConvBNLayer, self).__init__() |
|
self.if_act = if_act |
|
self.act = act |
|
self.conv = nn.Conv2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=(kernel_size - 1) // 2, |
|
groups=groups, |
|
weight_attr=ParamAttr(name=name + '_weights'), |
|
bias_attr=False) |
|
|
|
self.bn = nn.BatchNorm( |
|
num_channels=out_channels, |
|
act=act, |
|
param_attr=ParamAttr(name="bn_" + name + "_scale"), |
|
bias_attr=ParamAttr(name="bn_" + name + "_offset"), |
|
moving_mean_name="bn_" + name + "_mean", |
|
moving_variance_name="bn_" + name + "_variance") |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.bn(x) |
|
return x |
|
|
|
|
|
class DeConvBNLayer(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride, |
|
groups=1, |
|
if_act=True, |
|
act=None, |
|
name=None): |
|
super(DeConvBNLayer, self).__init__() |
|
self.if_act = if_act |
|
self.act = act |
|
self.deconv = nn.Conv2DTranspose( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=(kernel_size - 1) // 2, |
|
groups=groups, |
|
weight_attr=ParamAttr(name=name + '_weights'), |
|
bias_attr=False) |
|
self.bn = nn.BatchNorm( |
|
num_channels=out_channels, |
|
act=act, |
|
param_attr=ParamAttr(name="bn_" + name + "_scale"), |
|
bias_attr=ParamAttr(name="bn_" + name + "_offset"), |
|
moving_mean_name="bn_" + name + "_mean", |
|
moving_variance_name="bn_" + name + "_variance") |
|
|
|
def forward(self, x): |
|
x = self.deconv(x) |
|
x = self.bn(x) |
|
return x |
|
|
|
|
|
class FPN_Up_Fusion(nn.Layer): |
|
def __init__(self, in_channels): |
|
super(FPN_Up_Fusion, self).__init__() |
|
in_channels = in_channels[::-1] |
|
out_channels = [256, 256, 192, 192, 128] |
|
|
|
self.h0_conv = ConvBNLayer(in_channels[0], out_channels[0], 1, 1, act=None, name='fpn_up_h0') |
|
self.h1_conv = ConvBNLayer(in_channels[1], out_channels[1], 1, 1, act=None, name='fpn_up_h1') |
|
self.h2_conv = ConvBNLayer(in_channels[2], out_channels[2], 1, 1, act=None, name='fpn_up_h2') |
|
self.h3_conv = ConvBNLayer(in_channels[3], out_channels[3], 1, 1, act=None, name='fpn_up_h3') |
|
self.h4_conv = ConvBNLayer(in_channels[4], out_channels[4], 1, 1, act=None, name='fpn_up_h4') |
|
|
|
self.g0_conv = DeConvBNLayer(out_channels[0], out_channels[1], 4, 2, act=None, name='fpn_up_g0') |
|
|
|
self.g1_conv = nn.Sequential( |
|
ConvBNLayer(out_channels[1], out_channels[1], 3, 1, act='relu', name='fpn_up_g1_1'), |
|
DeConvBNLayer(out_channels[1], out_channels[2], 4, 2, act=None, name='fpn_up_g1_2') |
|
) |
|
self.g2_conv = nn.Sequential( |
|
ConvBNLayer(out_channels[2], out_channels[2], 3, 1, act='relu', name='fpn_up_g2_1'), |
|
DeConvBNLayer(out_channels[2], out_channels[3], 4, 2, act=None, name='fpn_up_g2_2') |
|
) |
|
self.g3_conv = nn.Sequential( |
|
ConvBNLayer(out_channels[3], out_channels[3], 3, 1, act='relu', name='fpn_up_g3_1'), |
|
DeConvBNLayer(out_channels[3], out_channels[4], 4, 2, act=None, name='fpn_up_g3_2') |
|
) |
|
|
|
self.g4_conv = nn.Sequential( |
|
ConvBNLayer(out_channels[4], out_channels[4], 3, 1, act='relu', name='fpn_up_fusion_1'), |
|
ConvBNLayer(out_channels[4], out_channels[4], 1, 1, act=None, name='fpn_up_fusion_2') |
|
) |
|
|
|
def _add_relu(self, x1, x2): |
|
x = paddle.add(x=x1, y=x2) |
|
x = F.relu(x) |
|
return x |
|
|
|
def forward(self, x): |
|
f = x[2:][::-1] |
|
h0 = self.h0_conv(f[0]) |
|
h1 = self.h1_conv(f[1]) |
|
h2 = self.h2_conv(f[2]) |
|
h3 = self.h3_conv(f[3]) |
|
h4 = self.h4_conv(f[4]) |
|
|
|
g0 = self.g0_conv(h0) |
|
g1 = self._add_relu(g0, h1) |
|
g1 = self.g1_conv(g1) |
|
g2 = self.g2_conv(self._add_relu(g1, h2)) |
|
g3 = self.g3_conv(self._add_relu(g2, h3)) |
|
g4 = self.g4_conv(self._add_relu(g3, h4)) |
|
|
|
return g4 |
|
|
|
|
|
class FPN_Down_Fusion(nn.Layer): |
|
def __init__(self, in_channels): |
|
super(FPN_Down_Fusion, self).__init__() |
|
out_channels = [32, 64, 128] |
|
|
|
self.h0_conv = ConvBNLayer(in_channels[0], out_channels[0], 3, 1, act=None, name='fpn_down_h0') |
|
self.h1_conv = ConvBNLayer(in_channels[1], out_channels[1], 3, 1, act=None, name='fpn_down_h1') |
|
self.h2_conv = ConvBNLayer(in_channels[2], out_channels[2], 3, 1, act=None, name='fpn_down_h2') |
|
|
|
self.g0_conv = ConvBNLayer(out_channels[0], out_channels[1], 3, 2, act=None, name='fpn_down_g0') |
|
|
|
self.g1_conv = nn.Sequential( |
|
ConvBNLayer(out_channels[1], out_channels[1], 3, 1, act='relu', name='fpn_down_g1_1'), |
|
ConvBNLayer(out_channels[1], out_channels[2], 3, 2, act=None, name='fpn_down_g1_2') |
|
) |
|
|
|
self.g2_conv = nn.Sequential( |
|
ConvBNLayer(out_channels[2], out_channels[2], 3, 1, act='relu', name='fpn_down_fusion_1'), |
|
ConvBNLayer(out_channels[2], out_channels[2], 1, 1, act=None, name='fpn_down_fusion_2') |
|
) |
|
|
|
def forward(self, x): |
|
f = x[:3] |
|
h0 = self.h0_conv(f[0]) |
|
h1 = self.h1_conv(f[1]) |
|
h2 = self.h2_conv(f[2]) |
|
g0 = self.g0_conv(h0) |
|
g1 = paddle.add(x=g0, y=h1) |
|
g1 = F.relu(g1) |
|
g1 = self.g1_conv(g1) |
|
g2 = paddle.add(x=g1, y=h2) |
|
g2 = F.relu(g2) |
|
g2 = self.g2_conv(g2) |
|
return g2 |
|
|
|
|
|
class Cross_Attention(nn.Layer): |
|
def __init__(self, in_channels): |
|
super(Cross_Attention, self).__init__() |
|
self.theta_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act='relu', name='f_theta') |
|
self.phi_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act='relu', name='f_phi') |
|
self.g_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act='relu', name='f_g') |
|
|
|
self.fh_weight_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act=None, name='fh_weight') |
|
self.fh_sc_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act=None, name='fh_sc') |
|
|
|
self.fv_weight_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act=None, name='fv_weight') |
|
self.fv_sc_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act=None, name='fv_sc') |
|
|
|
self.f_attn_conv = ConvBNLayer(in_channels * 2, in_channels, 1, 1, act='relu', name='f_attn') |
|
|
|
def _cal_fweight(self, f, shape): |
|
f_theta, f_phi, f_g = f |
|
|
|
f_theta = paddle.transpose(f_theta, [0, 2, 3, 1]) |
|
f_theta = paddle.reshape(f_theta, [shape[0] * shape[1], shape[2], 128]) |
|
f_phi = paddle.transpose(f_phi, [0, 2, 3, 1]) |
|
f_phi = paddle.reshape(f_phi, [shape[0] * shape[1], shape[2], 128]) |
|
f_g = paddle.transpose(f_g, [0, 2, 3, 1]) |
|
f_g = paddle.reshape(f_g, [shape[0] * shape[1], shape[2], 128]) |
|
|
|
f_attn = paddle.matmul(f_theta, paddle.transpose(f_phi, [0, 2, 1])) |
|
|
|
f_attn = f_attn / (128**0.5) |
|
f_attn = F.softmax(f_attn) |
|
|
|
f_weight = paddle.matmul(f_attn, f_g) |
|
f_weight = paddle.reshape( |
|
f_weight, [shape[0], shape[1], shape[2], 128]) |
|
return f_weight |
|
|
|
def forward(self, f_common): |
|
f_shape = paddle.shape(f_common) |
|
|
|
|
|
f_theta = self.theta_conv(f_common) |
|
f_phi = self.phi_conv(f_common) |
|
f_g = self.g_conv(f_common) |
|
|
|
|
|
fh_weight = self._cal_fweight([f_theta, f_phi, f_g], |
|
[f_shape[0], f_shape[2], f_shape[3]]) |
|
fh_weight = paddle.transpose(fh_weight, [0, 3, 1, 2]) |
|
fh_weight = self.fh_weight_conv(fh_weight) |
|
|
|
fh_sc = self.fh_sc_conv(f_common) |
|
f_h = F.relu(fh_weight + fh_sc) |
|
|
|
|
|
fv_theta = paddle.transpose(f_theta, [0, 1, 3, 2]) |
|
fv_phi = paddle.transpose(f_phi, [0, 1, 3, 2]) |
|
fv_g = paddle.transpose(f_g, [0, 1, 3, 2]) |
|
fv_weight = self._cal_fweight([fv_theta, fv_phi, fv_g], |
|
[f_shape[0], f_shape[3], f_shape[2]]) |
|
fv_weight = paddle.transpose(fv_weight, [0, 3, 2, 1]) |
|
fv_weight = self.fv_weight_conv(fv_weight) |
|
|
|
fv_sc = self.fv_sc_conv(f_common) |
|
f_v = F.relu(fv_weight + fv_sc) |
|
|
|
|
|
f_attn = paddle.concat([f_h, f_v], axis=1) |
|
f_attn = self.f_attn_conv(f_attn) |
|
return f_attn |
|
|
|
|
|
class SASTFPN(nn.Layer): |
|
def __init__(self, in_channels, with_cab=False, **kwargs): |
|
super(SASTFPN, self).__init__() |
|
self.in_channels = in_channels |
|
self.with_cab = with_cab |
|
self.FPN_Down_Fusion = FPN_Down_Fusion(self.in_channels) |
|
self.FPN_Up_Fusion = FPN_Up_Fusion(self.in_channels) |
|
self.out_channels = 128 |
|
self.cross_attention = Cross_Attention(self.out_channels) |
|
|
|
def forward(self, x): |
|
|
|
f_down = self.FPN_Down_Fusion(x) |
|
|
|
|
|
f_up = self.FPN_Up_Fusion(x) |
|
|
|
|
|
f_common = paddle.add(x=f_down, y=f_up) |
|
f_common = F.relu(f_common) |
|
|
|
if self.with_cab: |
|
|
|
f_common = self.cross_attention(f_common) |
|
|
|
return f_common |
|
|