|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from rapidfuzz.distance import Levenshtein |
|
from difflib import SequenceMatcher |
|
|
|
import numpy as np |
|
import string |
|
|
|
|
|
class RecMetric(object): |
|
def __init__(self, |
|
main_indicator='acc', |
|
is_filter=False, |
|
ignore_space=True, |
|
**kwargs): |
|
self.main_indicator = main_indicator |
|
self.is_filter = is_filter |
|
self.ignore_space = ignore_space |
|
self.eps = 1e-5 |
|
self.reset() |
|
|
|
def _normalize_text(self, text): |
|
text = ''.join( |
|
filter(lambda x: x in (string.digits + string.ascii_letters), text)) |
|
return text.lower() |
|
|
|
def __call__(self, pred_label, *args, **kwargs): |
|
preds, labels = pred_label |
|
correct_num = 0 |
|
all_num = 0 |
|
norm_edit_dis = 0.0 |
|
for (pred, pred_conf), (target, _) in zip(preds, labels): |
|
if self.ignore_space: |
|
pred = pred.replace(" ", "") |
|
target = target.replace(" ", "") |
|
if self.is_filter: |
|
pred = self._normalize_text(pred) |
|
target = self._normalize_text(target) |
|
norm_edit_dis += Levenshtein.normalized_distance(pred, target) |
|
if pred == target: |
|
correct_num += 1 |
|
all_num += 1 |
|
self.correct_num += correct_num |
|
self.all_num += all_num |
|
self.norm_edit_dis += norm_edit_dis |
|
return { |
|
'acc': correct_num / (all_num + self.eps), |
|
'norm_edit_dis': 1 - norm_edit_dis / (all_num + self.eps) |
|
} |
|
|
|
def get_metric(self): |
|
""" |
|
return metrics { |
|
'acc': 0, |
|
'norm_edit_dis': 0, |
|
} |
|
""" |
|
acc = 1.0 * self.correct_num / (self.all_num + self.eps) |
|
norm_edit_dis = 1 - self.norm_edit_dis / (self.all_num + self.eps) |
|
self.reset() |
|
return {'acc': acc, 'norm_edit_dis': norm_edit_dis} |
|
|
|
def reset(self): |
|
self.correct_num = 0 |
|
self.all_num = 0 |
|
self.norm_edit_dis = 0 |
|
|
|
|
|
class CNTMetric(object): |
|
def __init__(self, main_indicator='acc', **kwargs): |
|
self.main_indicator = main_indicator |
|
self.eps = 1e-5 |
|
self.reset() |
|
|
|
def __call__(self, pred_label, *args, **kwargs): |
|
preds, labels = pred_label |
|
correct_num = 0 |
|
all_num = 0 |
|
for pred, target in zip(preds, labels): |
|
if pred == target: |
|
correct_num += 1 |
|
all_num += 1 |
|
self.correct_num += correct_num |
|
self.all_num += all_num |
|
return {'acc': correct_num / (all_num + self.eps), } |
|
|
|
def get_metric(self): |
|
""" |
|
return metrics { |
|
'acc': 0, |
|
} |
|
""" |
|
acc = 1.0 * self.correct_num / (self.all_num + self.eps) |
|
self.reset() |
|
return {'acc': acc} |
|
|
|
def reset(self): |
|
self.correct_num = 0 |
|
self.all_num = 0 |
|
|
|
|
|
class CANMetric(object): |
|
def __init__(self, main_indicator='exp_rate', **kwargs): |
|
self.main_indicator = main_indicator |
|
self.word_right = [] |
|
self.exp_right = [] |
|
self.word_total_length = 0 |
|
self.exp_total_num = 0 |
|
self.word_rate = 0 |
|
self.exp_rate = 0 |
|
self.reset() |
|
self.epoch_reset() |
|
|
|
def __call__(self, preds, batch, **kwargs): |
|
for k, v in kwargs.items(): |
|
epoch_reset = v |
|
if epoch_reset: |
|
self.epoch_reset() |
|
word_probs = preds |
|
word_label, word_label_mask = batch |
|
line_right = 0 |
|
if word_probs is not None: |
|
word_pred = word_probs.argmax(2) |
|
word_pred = word_pred.cpu().detach().numpy() |
|
word_scores = [ |
|
SequenceMatcher( |
|
None, |
|
s1[:int(np.sum(s3))], |
|
s2[:int(np.sum(s3))], |
|
autojunk=False).ratio() * ( |
|
len(s1[:int(np.sum(s3))]) + len(s2[:int(np.sum(s3))])) / |
|
len(s1[:int(np.sum(s3))]) / 2 |
|
for s1, s2, s3 in zip(word_label, word_pred, word_label_mask) |
|
] |
|
batch_size = len(word_scores) |
|
for i in range(batch_size): |
|
if word_scores[i] == 1: |
|
line_right += 1 |
|
self.word_rate = np.mean(word_scores) |
|
self.exp_rate = line_right / batch_size |
|
exp_length, word_length = word_label.shape[:2] |
|
self.word_right.append(self.word_rate * word_length) |
|
self.exp_right.append(self.exp_rate * exp_length) |
|
self.word_total_length = self.word_total_length + word_length |
|
self.exp_total_num = self.exp_total_num + exp_length |
|
|
|
def get_metric(self): |
|
""" |
|
return { |
|
'word_rate': 0, |
|
"exp_rate": 0, |
|
} |
|
""" |
|
cur_word_rate = sum(self.word_right) / self.word_total_length |
|
cur_exp_rate = sum(self.exp_right) / self.exp_total_num |
|
self.reset() |
|
return {'word_rate': cur_word_rate, "exp_rate": cur_exp_rate} |
|
|
|
def reset(self): |
|
self.word_rate = 0 |
|
self.exp_rate = 0 |
|
|
|
def epoch_reset(self): |
|
self.word_right = [] |
|
self.exp_right = [] |
|
self.word_total_length = 0 |
|
self.exp_total_num = 0 |
|
|