|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This code is refer from: |
|
https://github.com/shengtao96/CentripetalText/tree/main/models/loss |
|
""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import paddle |
|
from paddle import nn |
|
import paddle.nn.functional as F |
|
import numpy as np |
|
|
|
|
|
def ohem_single(score, gt_text, training_mask): |
|
|
|
|
|
pos_num = int(paddle.sum(gt_text > 0.5)) - int( |
|
paddle.sum((gt_text > 0.5) & (training_mask <= 0.5))) |
|
|
|
if pos_num == 0: |
|
|
|
selected_mask = training_mask |
|
selected_mask = paddle.cast( |
|
selected_mask.reshape( |
|
(1, selected_mask.shape[0], selected_mask.shape[1])), "float32") |
|
return selected_mask |
|
|
|
neg_num = int(paddle.sum((gt_text <= 0.5) & (training_mask > 0.5))) |
|
neg_num = int(min(pos_num * 3, neg_num)) |
|
|
|
if neg_num == 0: |
|
selected_mask = training_mask |
|
selected_mask = paddle.cast( |
|
selected_mask.reshape( |
|
(1, selected_mask.shape[0], selected_mask.shape[1])), "float32") |
|
return selected_mask |
|
|
|
|
|
neg_score = score[(gt_text <= 0.5) & (training_mask > 0.5)] |
|
neg_score_sorted = paddle.sort(-neg_score) |
|
threshold = -neg_score_sorted[neg_num - 1] |
|
|
|
selected_mask = ((score >= threshold) | |
|
(gt_text > 0.5)) & (training_mask > 0.5) |
|
selected_mask = paddle.cast( |
|
selected_mask.reshape( |
|
(1, selected_mask.shape[0], selected_mask.shape[1])), "float32") |
|
return selected_mask |
|
|
|
|
|
def ohem_batch(scores, gt_texts, training_masks): |
|
selected_masks = [] |
|
for i in range(scores.shape[0]): |
|
selected_masks.append( |
|
ohem_single(scores[i, :, :], gt_texts[i, :, :], training_masks[ |
|
i, :, :])) |
|
|
|
selected_masks = paddle.cast(paddle.concat(selected_masks, 0), "float32") |
|
return selected_masks |
|
|
|
|
|
def iou_single(a, b, mask, n_class): |
|
EPS = 1e-6 |
|
valid = mask == 1 |
|
a = a[valid] |
|
b = b[valid] |
|
miou = [] |
|
|
|
|
|
for i in range(n_class): |
|
inter = paddle.cast(((a == i) & (b == i)), "float32") |
|
union = paddle.cast(((a == i) | (b == i)), "float32") |
|
|
|
miou.append(paddle.sum(inter) / (paddle.sum(union) + EPS)) |
|
miou = sum(miou) / len(miou) |
|
return miou |
|
|
|
|
|
def iou(a, b, mask, n_class=2, reduce=True): |
|
batch_size = a.shape[0] |
|
|
|
a = a.reshape((batch_size, -1)) |
|
b = b.reshape((batch_size, -1)) |
|
mask = mask.reshape((batch_size, -1)) |
|
|
|
iou = paddle.zeros((batch_size, ), dtype="float32") |
|
for i in range(batch_size): |
|
iou[i] = iou_single(a[i], b[i], mask[i], n_class) |
|
|
|
if reduce: |
|
iou = paddle.mean(iou) |
|
return iou |
|
|
|
|
|
class DiceLoss(nn.Layer): |
|
def __init__(self, loss_weight=1.0): |
|
super(DiceLoss, self).__init__() |
|
self.loss_weight = loss_weight |
|
|
|
def forward(self, input, target, mask, reduce=True): |
|
batch_size = input.shape[0] |
|
input = F.sigmoid(input) |
|
|
|
input = input.reshape((batch_size, -1)) |
|
target = paddle.cast(target.reshape((batch_size, -1)), "float32") |
|
mask = paddle.cast(mask.reshape((batch_size, -1)), "float32") |
|
|
|
input = input * mask |
|
target = target * mask |
|
|
|
a = paddle.sum(input * target, axis=1) |
|
b = paddle.sum(input * input, axis=1) + 0.001 |
|
c = paddle.sum(target * target, axis=1) + 0.001 |
|
d = (2 * a) / (b + c) |
|
loss = 1 - d |
|
|
|
loss = self.loss_weight * loss |
|
|
|
if reduce: |
|
loss = paddle.mean(loss) |
|
|
|
return loss |
|
|
|
|
|
class SmoothL1Loss(nn.Layer): |
|
def __init__(self, beta=1.0, loss_weight=1.0): |
|
super(SmoothL1Loss, self).__init__() |
|
self.beta = beta |
|
self.loss_weight = loss_weight |
|
|
|
np_coord = np.zeros(shape=[640, 640, 2], dtype=np.int64) |
|
for i in range(640): |
|
for j in range(640): |
|
np_coord[i, j, 0] = j |
|
np_coord[i, j, 1] = i |
|
np_coord = np_coord.reshape((-1, 2)) |
|
|
|
self.coord = self.create_parameter( |
|
shape=[640 * 640, 2], |
|
dtype="int32", |
|
default_initializer=nn.initializer.Assign(value=np_coord)) |
|
self.coord.stop_gradient = True |
|
|
|
def forward_single(self, input, target, mask, beta=1.0, eps=1e-6): |
|
batch_size = input.shape[0] |
|
|
|
diff = paddle.abs(input - target) * mask.unsqueeze(1) |
|
loss = paddle.where(diff < beta, 0.5 * diff * diff / beta, |
|
diff - 0.5 * beta) |
|
loss = paddle.cast(loss.reshape((batch_size, -1)), "float32") |
|
mask = paddle.cast(mask.reshape((batch_size, -1)), "float32") |
|
loss = paddle.sum(loss, axis=-1) |
|
loss = loss / (mask.sum(axis=-1) + eps) |
|
|
|
return loss |
|
|
|
def select_single(self, distance, gt_instance, gt_kernel_instance, |
|
training_mask): |
|
|
|
with paddle.no_grad(): |
|
|
|
|
|
select_distance_list = [] |
|
for i in range(2): |
|
tmp1 = distance[i, :] |
|
tmp2 = tmp1[self.coord[:, 1], self.coord[:, 0]] |
|
select_distance_list.append(tmp2.unsqueeze(0)) |
|
select_distance = paddle.concat(select_distance_list, axis=0) |
|
|
|
off_points = paddle.cast( |
|
self.coord, "float32") + 10 * select_distance.transpose((1, 0)) |
|
|
|
off_points = paddle.cast(off_points, "int64") |
|
off_points = paddle.clip(off_points, 0, distance.shape[-1] - 1) |
|
|
|
selected_mask = ( |
|
gt_instance[self.coord[:, 1], self.coord[:, 0]] != |
|
gt_kernel_instance[off_points[:, 1], off_points[:, 0]]) |
|
selected_mask = paddle.cast( |
|
selected_mask.reshape((1, -1, distance.shape[-1])), "int64") |
|
selected_training_mask = selected_mask * training_mask |
|
|
|
return selected_training_mask |
|
|
|
def forward(self, |
|
distances, |
|
gt_instances, |
|
gt_kernel_instances, |
|
training_masks, |
|
gt_distances, |
|
reduce=True): |
|
|
|
selected_training_masks = [] |
|
for i in range(distances.shape[0]): |
|
selected_training_masks.append( |
|
self.select_single(distances[i, :, :, :], gt_instances[i, :, :], |
|
gt_kernel_instances[i, :, :], training_masks[ |
|
i, :, :])) |
|
selected_training_masks = paddle.cast( |
|
paddle.concat(selected_training_masks, 0), "float32") |
|
|
|
loss = self.forward_single(distances, gt_distances, |
|
selected_training_masks, self.beta) |
|
loss = self.loss_weight * loss |
|
|
|
with paddle.no_grad(): |
|
batch_size = distances.shape[0] |
|
false_num = selected_training_masks.reshape((batch_size, -1)) |
|
false_num = false_num.sum(axis=-1) |
|
total_num = paddle.cast( |
|
training_masks.reshape((batch_size, -1)), "float32") |
|
total_num = total_num.sum(axis=-1) |
|
iou_text = (total_num - false_num) / (total_num + 1e-6) |
|
|
|
if reduce: |
|
loss = paddle.mean(loss) |
|
|
|
return loss, iou_text |
|
|
|
|
|
class CTLoss(nn.Layer): |
|
def __init__(self): |
|
super(CTLoss, self).__init__() |
|
self.kernel_loss = DiceLoss() |
|
self.loc_loss = SmoothL1Loss(beta=0.1, loss_weight=0.05) |
|
|
|
def forward(self, preds, batch): |
|
imgs = batch[0] |
|
out = preds['maps'] |
|
gt_kernels, training_masks, gt_instances, gt_kernel_instances, training_mask_distances, gt_distances = batch[ |
|
1:] |
|
|
|
kernels = out[:, 0, :, :] |
|
distances = out[:, 1:, :, :] |
|
|
|
|
|
selected_masks = ohem_batch(kernels, gt_kernels, training_masks) |
|
|
|
loss_kernel = self.kernel_loss( |
|
kernels, gt_kernels, selected_masks, reduce=False) |
|
|
|
iou_kernel = iou(paddle.cast((kernels > 0), "int64"), |
|
gt_kernels, |
|
training_masks, |
|
reduce=False) |
|
losses = dict(loss_kernels=loss_kernel, ) |
|
|
|
|
|
loss_loc, iou_text = self.loc_loss( |
|
distances, |
|
gt_instances, |
|
gt_kernel_instances, |
|
training_mask_distances, |
|
gt_distances, |
|
reduce=False) |
|
losses.update(dict(loss_loc=loss_loc, )) |
|
|
|
loss_all = loss_kernel + loss_loc |
|
losses = {'loss': loss_all} |
|
|
|
return losses |
|
|