Danieldu
add code
a89d9fd
raw
history blame
9.37 kB
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/shengtao96/CentripetalText/tree/main/models/loss
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import nn
import paddle.nn.functional as F
import numpy as np
def ohem_single(score, gt_text, training_mask):
# online hard example mining
pos_num = int(paddle.sum(gt_text > 0.5)) - int(
paddle.sum((gt_text > 0.5) & (training_mask <= 0.5)))
if pos_num == 0:
# selected_mask = gt_text.copy() * 0 # may be not good
selected_mask = training_mask
selected_mask = paddle.cast(
selected_mask.reshape(
(1, selected_mask.shape[0], selected_mask.shape[1])), "float32")
return selected_mask
neg_num = int(paddle.sum((gt_text <= 0.5) & (training_mask > 0.5)))
neg_num = int(min(pos_num * 3, neg_num))
if neg_num == 0:
selected_mask = training_mask
selected_mask = paddle.cast(
selected_mask.reshape(
(1, selected_mask.shape[0], selected_mask.shape[1])), "float32")
return selected_mask
# hard example
neg_score = score[(gt_text <= 0.5) & (training_mask > 0.5)]
neg_score_sorted = paddle.sort(-neg_score)
threshold = -neg_score_sorted[neg_num - 1]
selected_mask = ((score >= threshold) |
(gt_text > 0.5)) & (training_mask > 0.5)
selected_mask = paddle.cast(
selected_mask.reshape(
(1, selected_mask.shape[0], selected_mask.shape[1])), "float32")
return selected_mask
def ohem_batch(scores, gt_texts, training_masks):
selected_masks = []
for i in range(scores.shape[0]):
selected_masks.append(
ohem_single(scores[i, :, :], gt_texts[i, :, :], training_masks[
i, :, :]))
selected_masks = paddle.cast(paddle.concat(selected_masks, 0), "float32")
return selected_masks
def iou_single(a, b, mask, n_class):
EPS = 1e-6
valid = mask == 1
a = a[valid]
b = b[valid]
miou = []
# iou of each class
for i in range(n_class):
inter = paddle.cast(((a == i) & (b == i)), "float32")
union = paddle.cast(((a == i) | (b == i)), "float32")
miou.append(paddle.sum(inter) / (paddle.sum(union) + EPS))
miou = sum(miou) / len(miou)
return miou
def iou(a, b, mask, n_class=2, reduce=True):
batch_size = a.shape[0]
a = a.reshape((batch_size, -1))
b = b.reshape((batch_size, -1))
mask = mask.reshape((batch_size, -1))
iou = paddle.zeros((batch_size, ), dtype="float32")
for i in range(batch_size):
iou[i] = iou_single(a[i], b[i], mask[i], n_class)
if reduce:
iou = paddle.mean(iou)
return iou
class DiceLoss(nn.Layer):
def __init__(self, loss_weight=1.0):
super(DiceLoss, self).__init__()
self.loss_weight = loss_weight
def forward(self, input, target, mask, reduce=True):
batch_size = input.shape[0]
input = F.sigmoid(input) # scale to 0-1
input = input.reshape((batch_size, -1))
target = paddle.cast(target.reshape((batch_size, -1)), "float32")
mask = paddle.cast(mask.reshape((batch_size, -1)), "float32")
input = input * mask
target = target * mask
a = paddle.sum(input * target, axis=1)
b = paddle.sum(input * input, axis=1) + 0.001
c = paddle.sum(target * target, axis=1) + 0.001
d = (2 * a) / (b + c)
loss = 1 - d
loss = self.loss_weight * loss
if reduce:
loss = paddle.mean(loss)
return loss
class SmoothL1Loss(nn.Layer):
def __init__(self, beta=1.0, loss_weight=1.0):
super(SmoothL1Loss, self).__init__()
self.beta = beta
self.loss_weight = loss_weight
np_coord = np.zeros(shape=[640, 640, 2], dtype=np.int64)
for i in range(640):
for j in range(640):
np_coord[i, j, 0] = j
np_coord[i, j, 1] = i
np_coord = np_coord.reshape((-1, 2))
self.coord = self.create_parameter(
shape=[640 * 640, 2],
dtype="int32", # NOTE: not support "int64" before paddle 2.3.1
default_initializer=nn.initializer.Assign(value=np_coord))
self.coord.stop_gradient = True
def forward_single(self, input, target, mask, beta=1.0, eps=1e-6):
batch_size = input.shape[0]
diff = paddle.abs(input - target) * mask.unsqueeze(1)
loss = paddle.where(diff < beta, 0.5 * diff * diff / beta,
diff - 0.5 * beta)
loss = paddle.cast(loss.reshape((batch_size, -1)), "float32")
mask = paddle.cast(mask.reshape((batch_size, -1)), "float32")
loss = paddle.sum(loss, axis=-1)
loss = loss / (mask.sum(axis=-1) + eps)
return loss
def select_single(self, distance, gt_instance, gt_kernel_instance,
training_mask):
with paddle.no_grad():
# paddle 2.3.1, paddle.slice not support:
# distance[:, self.coord[:, 1], self.coord[:, 0]]
select_distance_list = []
for i in range(2):
tmp1 = distance[i, :]
tmp2 = tmp1[self.coord[:, 1], self.coord[:, 0]]
select_distance_list.append(tmp2.unsqueeze(0))
select_distance = paddle.concat(select_distance_list, axis=0)
off_points = paddle.cast(
self.coord, "float32") + 10 * select_distance.transpose((1, 0))
off_points = paddle.cast(off_points, "int64")
off_points = paddle.clip(off_points, 0, distance.shape[-1] - 1)
selected_mask = (
gt_instance[self.coord[:, 1], self.coord[:, 0]] !=
gt_kernel_instance[off_points[:, 1], off_points[:, 0]])
selected_mask = paddle.cast(
selected_mask.reshape((1, -1, distance.shape[-1])), "int64")
selected_training_mask = selected_mask * training_mask
return selected_training_mask
def forward(self,
distances,
gt_instances,
gt_kernel_instances,
training_masks,
gt_distances,
reduce=True):
selected_training_masks = []
for i in range(distances.shape[0]):
selected_training_masks.append(
self.select_single(distances[i, :, :, :], gt_instances[i, :, :],
gt_kernel_instances[i, :, :], training_masks[
i, :, :]))
selected_training_masks = paddle.cast(
paddle.concat(selected_training_masks, 0), "float32")
loss = self.forward_single(distances, gt_distances,
selected_training_masks, self.beta)
loss = self.loss_weight * loss
with paddle.no_grad():
batch_size = distances.shape[0]
false_num = selected_training_masks.reshape((batch_size, -1))
false_num = false_num.sum(axis=-1)
total_num = paddle.cast(
training_masks.reshape((batch_size, -1)), "float32")
total_num = total_num.sum(axis=-1)
iou_text = (total_num - false_num) / (total_num + 1e-6)
if reduce:
loss = paddle.mean(loss)
return loss, iou_text
class CTLoss(nn.Layer):
def __init__(self):
super(CTLoss, self).__init__()
self.kernel_loss = DiceLoss()
self.loc_loss = SmoothL1Loss(beta=0.1, loss_weight=0.05)
def forward(self, preds, batch):
imgs = batch[0]
out = preds['maps']
gt_kernels, training_masks, gt_instances, gt_kernel_instances, training_mask_distances, gt_distances = batch[
1:]
kernels = out[:, 0, :, :]
distances = out[:, 1:, :, :]
# kernel loss
selected_masks = ohem_batch(kernels, gt_kernels, training_masks)
loss_kernel = self.kernel_loss(
kernels, gt_kernels, selected_masks, reduce=False)
iou_kernel = iou(paddle.cast((kernels > 0), "int64"),
gt_kernels,
training_masks,
reduce=False)
losses = dict(loss_kernels=loss_kernel, )
# loc loss
loss_loc, iou_text = self.loc_loss(
distances,
gt_instances,
gt_kernel_instances,
training_mask_distances,
gt_distances,
reduce=False)
losses.update(dict(loss_loc=loss_loc, ))
loss_all = loss_kernel + loss_loc
losses = {'loss': loss_all}
return losses