File size: 4,832 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))

os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

import cv2
import json
import paddle

from ppocr.data import create_operators, transform
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import load_model
from ppocr.utils.utility import get_image_file_list
import tools.program as program


def draw_det_res(dt_boxes, config, img, img_name, save_path):
    if len(dt_boxes) > 0:
        import cv2
        src_im = img
        for box in dt_boxes:
            box = np.array(box).astype(np.int32).reshape((-1, 1, 2))
            cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        if not os.path.exists(save_path):
            os.makedirs(save_path)
        save_path = os.path.join(save_path, os.path.basename(img_name))
        cv2.imwrite(save_path, src_im)
        logger.info("The detected Image saved in {}".format(save_path))


@paddle.no_grad()
def main():
    global_config = config['Global']

    # build model
    model = build_model(config['Architecture'])

    load_model(config, model)
    # build post process
    post_process_class = build_post_process(config['PostProcess'])

    # create data ops
    transforms = []
    for op in config['Eval']['dataset']['transforms']:
        op_name = list(op)[0]
        if 'Label' in op_name:
            continue
        elif op_name == 'KeepKeys':
            op[op_name]['keep_keys'] = ['image', 'shape']
        transforms.append(op)

    ops = create_operators(transforms, global_config)

    save_res_path = config['Global']['save_res_path']
    if not os.path.exists(os.path.dirname(save_res_path)):
        os.makedirs(os.path.dirname(save_res_path))

    model.eval()
    with open(save_res_path, "wb") as fout:
        for file in get_image_file_list(config['Global']['infer_img']):
            logger.info("infer_img: {}".format(file))
            with open(file, 'rb') as f:
                img = f.read()
                data = {'image': img}
            batch = transform(data, ops)

            images = np.expand_dims(batch[0], axis=0)
            shape_list = np.expand_dims(batch[1], axis=0)
            images = paddle.to_tensor(images)
            preds = model(images)
            post_result = post_process_class(preds, shape_list)

            src_img = cv2.imread(file)

            dt_boxes_json = []
            # parser boxes if post_result is dict
            if isinstance(post_result, dict):
                det_box_json = {}
                for k in post_result.keys():
                    boxes = post_result[k][0]['points']
                    dt_boxes_list = []
                    for box in boxes:
                        tmp_json = {"transcription": ""}
                        tmp_json['points'] = np.array(box).tolist()
                        dt_boxes_list.append(tmp_json)
                    det_box_json[k] = dt_boxes_list
                    save_det_path = os.path.dirname(config['Global'][
                        'save_res_path']) + "/det_results_{}/".format(k)
                    draw_det_res(boxes, config, src_img, file, save_det_path)
            else:
                boxes = post_result[0]['points']
                dt_boxes_json = []
                # write result
                for box in boxes:
                    tmp_json = {"transcription": ""}
                    tmp_json['points'] = np.array(box).tolist()
                    dt_boxes_json.append(tmp_json)
                save_det_path = os.path.dirname(config['Global'][
                    'save_res_path']) + "/det_results/"
                draw_det_res(boxes, config, src_img, file, save_det_path)
            otstr = file + "\t" + json.dumps(dt_boxes_json) + "\n"
            fout.write(otstr.encode())

    logger.info("success!")


if __name__ == '__main__':
    config, device, logger, vdl_writer = program.preprocess()
    main()