File size: 26,962 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import platform
import yaml
import time
import datetime
import paddle
import paddle.distributed as dist
from tqdm import tqdm
import cv2
import numpy as np
from argparse import ArgumentParser, RawDescriptionHelpFormatter

from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
from ppocr.utils.utility import print_dict, AverageMeter
from ppocr.utils.logging import get_logger
from ppocr.utils.loggers import VDLLogger, WandbLogger, Loggers
from ppocr.utils import profiler
from ppocr.data import build_dataloader


class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
            help='The option of profiler, which should be in format ' \
                 '\"key1=value1;key2=value2;key3=value3\".'
        )

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
    config = yaml.load(open(file_path, 'rb'), Loader=yaml.Loader)
    return config


def merge_config(config, opts):
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
    for key, value in opts.items():
        if "." not in key:
            if isinstance(value, dict) and key in config:
                config[key].update(value)
            else:
                config[key] = value
        else:
            sub_keys = key.split('.')
            assert (
                sub_keys[0] in config
            ), "the sub_keys can only be one of global_config: {}, but get: " \
               "{}, please check your running command".format(
                config.keys(), sub_keys[0])
            cur = config[sub_keys[0]]
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]
    return config


def check_device(use_gpu, use_xpu=False, use_npu=False, use_mlu=False):
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
    err = "Config {} cannot be set as true while your paddle " \
          "is not compiled with {} ! \nPlease try: \n" \
          "\t1. Install paddlepaddle to run model on {} \n" \
          "\t2. Set {} as false in config file to run " \
          "model on CPU"

    try:
        if use_gpu and use_xpu:
            print("use_xpu and use_gpu can not both be ture.")
        if use_gpu and not paddle.is_compiled_with_cuda():
            print(err.format("use_gpu", "cuda", "gpu", "use_gpu"))
            sys.exit(1)
        if use_xpu and not paddle.device.is_compiled_with_xpu():
            print(err.format("use_xpu", "xpu", "xpu", "use_xpu"))
            sys.exit(1)
        if use_npu:
            if int(paddle.version.major) != 0 and int(
                    paddle.version.major) <= 2 and int(
                        paddle.version.minor) <= 4:
                if not paddle.device.is_compiled_with_npu():
                    print(err.format("use_npu", "npu", "npu", "use_npu"))
                    sys.exit(1)
            # is_compiled_with_npu() has been updated after paddle-2.4
            else:
                if not paddle.device.is_compiled_with_custom_device("npu"):
                    print(err.format("use_npu", "npu", "npu", "use_npu"))
                    sys.exit(1)
        if use_mlu and not paddle.device.is_compiled_with_mlu():
            print(err.format("use_mlu", "mlu", "mlu", "use_mlu"))
            sys.exit(1)
    except Exception as e:
        pass


def to_float32(preds):
    if isinstance(preds, dict):
        for k in preds:
            if isinstance(preds[k], dict) or isinstance(preds[k], list):
                preds[k] = to_float32(preds[k])
            elif isinstance(preds[k], paddle.Tensor):
                preds[k] = preds[k].astype(paddle.float32)
    elif isinstance(preds, list):
        for k in range(len(preds)):
            if isinstance(preds[k], dict):
                preds[k] = to_float32(preds[k])
            elif isinstance(preds[k], list):
                preds[k] = to_float32(preds[k])
            elif isinstance(preds[k], paddle.Tensor):
                preds[k] = preds[k].astype(paddle.float32)
    elif isinstance(preds, paddle.Tensor):
        preds = preds.astype(paddle.float32)
    return preds


def train(config,
          train_dataloader,
          valid_dataloader,
          device,
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
          log_writer=None,
          scaler=None,
          amp_level='O2',
          amp_custom_black_list=[]):
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
    calc_epoch_interval = config['Global'].get('calc_epoch_interval', 1)
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
    profiler_options = config['profiler_options']

    global_step = 0
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
        if len(valid_dataloader) == 0:
            logger.info(
                'No Images in eval dataset, evaluation during training ' \
                'will be disabled'
            )
            start_eval_step = 1e111
        logger.info(
            "During the training process, after the {}th iteration, " \
            "an evaluation is run every {} iterations".
            format(start_eval_step, eval_batch_step))
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
    model_average = False
    model.train()

    use_srn = config['Architecture']['algorithm'] == "SRN"
    extra_input_models = [
        "SRN", "NRTR", "SAR", "SEED", "SVTR", "SPIN", "VisionLAN",
        "RobustScanner", "RFL", 'DRRG'
    ]
    extra_input = False
    if config['Architecture']['algorithm'] == 'Distillation':
        for key in config['Architecture']["Models"]:
            extra_input = extra_input or config['Architecture']['Models'][key][
                'algorithm'] in extra_input_models
    else:
        extra_input = config['Architecture']['algorithm'] in extra_input_models
    try:
        model_type = config['Architecture']['model_type']
    except:
        model_type = None

    algorithm = config['Architecture']['algorithm']

    start_epoch = best_model_dict[
        'start_epoch'] if 'start_epoch' in best_model_dict else 1

    total_samples = 0
    train_reader_cost = 0.0
    train_batch_cost = 0.0
    reader_start = time.time()
    eta_meter = AverageMeter()

    max_iter = len(train_dataloader) - 1 if platform.system(
    ) == "Windows" else len(train_dataloader)

    for epoch in range(start_epoch, epoch_num + 1):
        if train_dataloader.dataset.need_reset:
            train_dataloader = build_dataloader(
                config, 'Train', device, logger, seed=epoch)
            max_iter = len(train_dataloader) - 1 if platform.system(
            ) == "Windows" else len(train_dataloader)

        for idx, batch in enumerate(train_dataloader):
            profiler.add_profiler_step(profiler_options)
            train_reader_cost += time.time() - reader_start
            if idx >= max_iter:
                break
            lr = optimizer.get_lr()
            images = batch[0]
            if use_srn:
                model_average = True
            # use amp
            if scaler:
                with paddle.amp.auto_cast(
                        level=amp_level,
                        custom_black_list=amp_custom_black_list):
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
                    elif model_type in ["kie"]:
                        preds = model(batch)
                    elif algorithm in ['CAN']:
                        preds = model(batch[:3])
                    else:
                        preds = model(images)
                preds = to_float32(preds)
                loss = loss_class(preds, batch)
                avg_loss = loss['loss']
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)
            else:
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
                elif model_type in ["kie", 'sr']:
                    preds = model(batch)
                elif algorithm in ['CAN']:
                    preds = model(batch[:3])
                else:
                    preds = model(images)
                loss = loss_class(preds, batch)
                avg_loss = loss['loss']
                avg_loss.backward()
                optimizer.step()

            optimizer.clear_grad()

            if cal_metric_during_train and epoch % calc_epoch_interval == 0:  # only rec and cls need
                batch = [item.numpy() for item in batch]
                if model_type in ['kie', 'sr']:
                    eval_class(preds, batch)
                elif model_type in ['table']:
                    post_result = post_process_class(preds, batch)
                    eval_class(post_result, batch)
                elif algorithm in ['CAN']:
                    model_type = 'can'
                    eval_class(preds[0], batch[2:], epoch_reset=(idx == 0))
                else:
                    if config['Loss']['name'] in ['MultiLoss', 'MultiLoss_v2'
                                                  ]:  # for multi head loss
                        post_result = post_process_class(
                            preds['ctc'], batch[1])  # for CTC head out
                    elif config['Loss']['name'] in ['VLLoss']:
                        post_result = post_process_class(preds, batch[1],
                                                         batch[-1])
                    else:
                        post_result = post_process_class(preds, batch[1])
                    eval_class(post_result, batch)
                metric = eval_class.get_metric()
                train_stats.update(metric)

            train_batch_time = time.time() - reader_start
            train_batch_cost += train_batch_time
            eta_meter.update(train_batch_time)
            global_step += 1
            total_samples += len(images)

            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

            if log_writer is not None and dist.get_rank() == 0:
                log_writer.log_metrics(
                    metrics=train_stats.get(), prefix="TRAIN", step=global_step)

            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
                logs = train_stats.log()

                eta_sec = ((epoch_num + 1 - epoch) * \
                    len(train_dataloader) - idx - 1) * eta_meter.avg
                eta_sec_format = str(datetime.timedelta(seconds=int(eta_sec)))
                strs = 'epoch: [{}/{}], global_step: {}, {}, avg_reader_cost: ' \
                    '{:.5f} s, avg_batch_cost: {:.5f} s, avg_samples: {}, ' \
                    'ips: {:.5f} samples/s, eta: {}'.format(
                    epoch, epoch_num, global_step, logs,
                    train_reader_cost / print_batch_step,
                    train_batch_cost / print_batch_step,
                    total_samples / print_batch_step,
                    total_samples / train_batch_cost, eta_sec_format)
                logger.info(strs)

                total_samples = 0
                train_reader_cost = 0.0
                train_batch_cost = 0.0
            # eval
            if global_step > start_eval_step and \
                    (global_step - start_eval_step) % eval_batch_step == 0 \
                    and dist.get_rank() == 0:
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
                    model_type,
                    extra_input=extra_input,
                    scaler=scaler,
                    amp_level=amp_level,
                    amp_custom_black_list=amp_custom_black_list)
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)

                # logger metric
                if log_writer is not None:
                    log_writer.log_metrics(
                        metrics=cur_metric, prefix="EVAL", step=global_step)

                if cur_metric[main_indicator] >= best_model_dict[
                        main_indicator]:
                    best_model_dict.update(cur_metric)
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
                        config,
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
                        epoch=epoch,
                        global_step=global_step)
                best_str = 'best metric, {}'.format(', '.join([
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
                if log_writer is not None:
                    log_writer.log_metrics(
                        metrics={
                            "best_{}".format(main_indicator):
                            best_model_dict[main_indicator]
                        },
                        prefix="EVAL",
                        step=global_step)

                    log_writer.log_model(
                        is_best=True,
                        prefix="best_accuracy",
                        metadata=best_model_dict)

            reader_start = time.time()
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
                config,
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
                epoch=epoch,
                global_step=global_step)

            if log_writer is not None:
                log_writer.log_model(is_best=False, prefix="latest")

        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
                config,
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
                epoch=epoch,
                global_step=global_step)
            if log_writer is not None:
                log_writer.log_model(
                    is_best=False, prefix='iter_epoch_{}'.format(epoch))

    best_str = 'best metric, {}'.format(', '.join(
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
    if dist.get_rank() == 0 and log_writer is not None:
        log_writer.close()
    return


def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
         model_type=None,
         extra_input=False,
         scaler=None,
         amp_level='O2',
         amp_custom_black_list=[]):
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
        pbar = tqdm(
            total=len(valid_dataloader),
            desc='eval model:',
            position=0,
            leave=True)
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
        sum_images = 0
        for idx, batch in enumerate(valid_dataloader):
            if idx >= max_iter:
                break
            images = batch[0]
            start = time.time()

            # use amp
            if scaler:
                with paddle.amp.auto_cast(
                        level=amp_level,
                        custom_black_list=amp_custom_black_list):
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
                    elif model_type in ["kie"]:
                        preds = model(batch)
                    elif model_type in ['can']:
                        preds = model(batch[:3])
                    elif model_type in ['sr']:
                        preds = model(batch)
                        sr_img = preds["sr_img"]
                        lr_img = preds["lr_img"]
                    else:
                        preds = model(images)
                preds = to_float32(preds)
            else:
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
                elif model_type in ["kie"]:
                    preds = model(batch)
                elif model_type in ['can']:
                    preds = model(batch[:3])
                elif model_type in ['sr']:
                    preds = model(batch)
                    sr_img = preds["sr_img"]
                    lr_img = preds["lr_img"]
                else:
                    preds = model(images)

            batch_numpy = []
            for item in batch:
                if isinstance(item, paddle.Tensor):
                    batch_numpy.append(item.numpy())
                else:
                    batch_numpy.append(item)
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
            if model_type in ['table', 'kie']:
                if post_process_class is None:
                    eval_class(preds, batch_numpy)
                else:
                    post_result = post_process_class(preds, batch_numpy)
                    eval_class(post_result, batch_numpy)
            elif model_type in ['sr']:
                eval_class(preds, batch_numpy)
            elif model_type in ['can']:
                eval_class(preds[0], batch_numpy[2:], epoch_reset=(idx == 0))
            else:
                post_result = post_process_class(preds, batch_numpy[1])
                eval_class(post_result, batch_numpy)

            pbar.update(1)
            total_frame += len(images)
            sum_images += 1
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()

    pbar.close()
    model.train()
    metric['fps'] = total_frame / total_time
    return metric


def update_center(char_center, post_result, preds):
    result, label = post_result
    feats, logits = preds
    logits = paddle.argmax(logits, axis=-1)
    feats = feats.numpy()
    logits = logits.numpy()

    for idx_sample in range(len(label)):
        if result[idx_sample][0] == label[idx_sample][0]:
            feat = feats[idx_sample]
            logit = logits[idx_sample]
            for idx_time in range(len(logit)):
                index = logit[idx_time]
                if index in char_center.keys():
                    char_center[index][0] = (
                        char_center[index][0] * char_center[index][1] +
                        feat[idx_time]) / (char_center[index][1] + 1)
                    char_center[index][1] += 1
                else:
                    char_center[index] = [feat[idx_time], 1]
    return char_center


def get_center(model, eval_dataloader, post_process_class):
    pbar = tqdm(total=len(eval_dataloader), desc='get center:')
    max_iter = len(eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(eval_dataloader)
    char_center = dict()
    for idx, batch in enumerate(eval_dataloader):
        if idx >= max_iter:
            break
        images = batch[0]
        start = time.time()
        preds = model(images)

        batch = [item.numpy() for item in batch]
        # Obtain usable results from post-processing methods
        post_result = post_process_class(preds, batch[1])

        #update char_center
        char_center = update_center(char_center, post_result, preds)
        pbar.update(1)

    pbar.close()
    for key in char_center.keys():
        char_center[key] = char_center[key][0]
    return char_center


def preprocess(is_train=False):
    FLAGS = ArgsParser().parse_args()
    profiler_options = FLAGS.profiler_options
    config = load_config(FLAGS.config)
    config = merge_config(config, FLAGS.opt)
    profile_dic = {"profiler_options": FLAGS.profiler_options}
    config = merge_config(config, profile_dic)

    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
    logger = get_logger(log_file=log_file)

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global'].get('use_gpu', False)
    use_xpu = config['Global'].get('use_xpu', False)
    use_npu = config['Global'].get('use_npu', False)
    use_mlu = config['Global'].get('use_mlu', False)

    alg = config['Architecture']['algorithm']
    assert alg in [
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
        'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM', 'LayoutLMv2', 'PREN', 'FCE',
        'SVTR', 'ViTSTR', 'ABINet', 'DB++', 'TableMaster', 'SPIN', 'VisionLAN',
        'Gestalt', 'SLANet', 'RobustScanner', 'CT', 'RFL', 'DRRG', 'CAN',
        'Telescope'
    ]

    if use_xpu:
        device = 'xpu:{0}'.format(os.getenv('FLAGS_selected_xpus', 0))
    elif use_npu:
        device = 'npu:{0}'.format(os.getenv('FLAGS_selected_npus', 0))
    elif use_mlu:
        device = 'mlu:{0}'.format(os.getenv('FLAGS_selected_mlus', 0))
    else:
        device = 'gpu:{}'.format(dist.ParallelEnv()
                                 .dev_id) if use_gpu else 'cpu'
    check_device(use_gpu, use_xpu, use_npu, use_mlu)

    device = paddle.set_device(device)

    config['Global']['distributed'] = dist.get_world_size() != 1

    loggers = []

    if 'use_visualdl' in config['Global'] and config['Global']['use_visualdl']:
        save_model_dir = config['Global']['save_model_dir']
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
        log_writer = VDLLogger(vdl_writer_path)
        loggers.append(log_writer)
    if ('use_wandb' in config['Global'] and
            config['Global']['use_wandb']) or 'wandb' in config:
        save_dir = config['Global']['save_model_dir']
        wandb_writer_path = "{}/wandb".format(save_dir)
        if "wandb" in config:
            wandb_params = config['wandb']
        else:
            wandb_params = dict()
        wandb_params.update({'save_dir': save_dir})
        log_writer = WandbLogger(**wandb_params, config=config)
        loggers.append(log_writer)
    else:
        log_writer = None
    print_dict(config, logger)

    if loggers:
        log_writer = Loggers(loggers)
    else:
        log_writer = None

    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
    return config, device, logger, log_writer