File size: 5,658 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))

os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import cv2
import json
import paddle

from ppocr.data import create_operators, transform
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import load_model
from ppocr.utils.visual import draw_ser_results
from ppocr.utils.utility import get_image_file_list, load_vqa_bio_label_maps
import tools.program as program


def to_tensor(data):
    import numbers
    from collections import defaultdict
    data_dict = defaultdict(list)
    to_tensor_idxs = []

    for idx, v in enumerate(data):
        if isinstance(v, (np.ndarray, paddle.Tensor, numbers.Number)):
            if idx not in to_tensor_idxs:
                to_tensor_idxs.append(idx)
        data_dict[idx].append(v)
    for idx in to_tensor_idxs:
        data_dict[idx] = paddle.to_tensor(data_dict[idx])
    return list(data_dict.values())


class SerPredictor(object):
    def __init__(self, config):
        global_config = config['Global']
        self.algorithm = config['Architecture']["algorithm"]

        # build post process
        self.post_process_class = build_post_process(config['PostProcess'],
                                                     global_config)

        # build model
        self.model = build_model(config['Architecture'])

        load_model(
            config, self.model, model_type=config['Architecture']["model_type"])

        from paddleocr import PaddleOCR

        self.ocr_engine = PaddleOCR(
            use_angle_cls=False,
            show_log=False,
            rec_model_dir=global_config.get("kie_rec_model_dir", None),
            det_model_dir=global_config.get("kie_det_model_dir", None),
            use_gpu=global_config['use_gpu'])

        # create data ops
        transforms = []
        for op in config['Eval']['dataset']['transforms']:
            op_name = list(op)[0]
            if 'Label' in op_name:
                op[op_name]['ocr_engine'] = self.ocr_engine
            elif op_name == 'KeepKeys':
                op[op_name]['keep_keys'] = [
                    'input_ids', 'bbox', 'attention_mask', 'token_type_ids',
                    'image', 'labels', 'segment_offset_id', 'ocr_info',
                    'entities'
                ]

            transforms.append(op)
        if config["Global"].get("infer_mode", None) is None:
            global_config['infer_mode'] = True
        self.ops = create_operators(config['Eval']['dataset']['transforms'],
                                    global_config)
        self.model.eval()

    def __call__(self, data):
        with open(data["img_path"], 'rb') as f:
            img = f.read()
        data["image"] = img
        batch = transform(data, self.ops)
        batch = to_tensor(batch)
        preds = self.model(batch)

        post_result = self.post_process_class(
            preds, segment_offset_ids=batch[6], ocr_infos=batch[7])
        return post_result, batch


if __name__ == '__main__':
    config, device, logger, vdl_writer = program.preprocess()
    os.makedirs(config['Global']['save_res_path'], exist_ok=True)

    ser_engine = SerPredictor(config)

    if config["Global"].get("infer_mode", None) is False:
        data_dir = config['Eval']['dataset']['data_dir']
        with open(config['Global']['infer_img'], "rb") as f:
            infer_imgs = f.readlines()
    else:
        infer_imgs = get_image_file_list(config['Global']['infer_img'])

    with open(
            os.path.join(config['Global']['save_res_path'],
                         "infer_results.txt"),
            "w",
            encoding='utf-8') as fout:
        for idx, info in enumerate(infer_imgs):
            if config["Global"].get("infer_mode", None) is False:
                data_line = info.decode('utf-8')
                substr = data_line.strip("\n").split("\t")
                img_path = os.path.join(data_dir, substr[0])
                data = {'img_path': img_path, 'label': substr[1]}
            else:
                img_path = info
                data = {'img_path': img_path}

            save_img_path = os.path.join(
                config['Global']['save_res_path'],
                os.path.splitext(os.path.basename(img_path))[0] + "_ser.jpg")

            result, _ = ser_engine(data)
            result = result[0]
            fout.write(img_path + "\t" + json.dumps(
                {
                    "ocr_info": result,
                }, ensure_ascii=False) + "\n")
            img_res = draw_ser_results(img_path, result)
            cv2.imwrite(save_img_path, img_res)

            logger.info("process: [{}/{}], save result to {}".format(
                idx, len(infer_imgs), save_img_path))