File size: 4,879 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))

os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

import cv2
import json
import numpy as np
import time

import tools.infer.utility as utility
from tools.infer_kie_token_ser_re import make_input
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
from ppocr.utils.visual import draw_ser_results, draw_re_results
from ppocr.utils.utility import get_image_file_list, check_and_read
from ppstructure.utility import parse_args
from ppstructure.kie.predict_kie_token_ser import SerPredictor

logger = get_logger()


class SerRePredictor(object):
    def __init__(self, args):
        self.use_visual_backbone = args.use_visual_backbone
        self.ser_engine = SerPredictor(args)
        if args.re_model_dir is not None:
            postprocess_params = {'name': 'VQAReTokenLayoutLMPostProcess'}
            self.postprocess_op = build_post_process(postprocess_params)
            self.predictor, self.input_tensor, self.output_tensors, self.config = \
                utility.create_predictor(args, 're', logger)
        else:
            self.predictor = None

    def __call__(self, img):
        starttime = time.time()
        ser_results, ser_inputs, ser_elapse = self.ser_engine(img)
        if self.predictor is None:
            return ser_results, ser_elapse

        re_input, entity_idx_dict_batch = make_input(ser_inputs, ser_results)
        if self.use_visual_backbone == False:
            re_input.pop(4)
        for idx in range(len(self.input_tensor)):
            self.input_tensor[idx].copy_from_cpu(re_input[idx])

        self.predictor.run()
        outputs = []
        for output_tensor in self.output_tensors:
            output = output_tensor.copy_to_cpu()
            outputs.append(output)
        preds = dict(
            loss=outputs[1],
            pred_relations=outputs[2],
            hidden_states=outputs[0], )

        post_result = self.postprocess_op(
            preds,
            ser_results=ser_results,
            entity_idx_dict_batch=entity_idx_dict_batch)

        elapse = time.time() - starttime
        return post_result, elapse


def main(args):
    image_file_list = get_image_file_list(args.image_dir)
    ser_re_predictor = SerRePredictor(args)
    count = 0
    total_time = 0

    os.makedirs(args.output, exist_ok=True)
    with open(
            os.path.join(args.output, 'infer.txt'), mode='w',
            encoding='utf-8') as f_w:
        for image_file in image_file_list:
            img, flag, _ = check_and_read(image_file)
            if not flag:
                img = cv2.imread(image_file)
                img = img[:, :, ::-1]
            if img is None:
                logger.info("error in loading image:{}".format(image_file))
                continue
            re_res, elapse = ser_re_predictor(img)
            re_res = re_res[0]

            res_str = '{}\t{}\n'.format(
                image_file,
                json.dumps(
                    {
                        "ocr_info": re_res,
                    }, ensure_ascii=False))
            f_w.write(res_str)
            if ser_re_predictor.predictor is not None:
                img_res = draw_re_results(
                    image_file, re_res, font_path=args.vis_font_path)
                img_save_path = os.path.join(
                    args.output,
                    os.path.splitext(os.path.basename(image_file))[0] +
                    "_ser_re.jpg")
            else:
                img_res = draw_ser_results(
                    image_file, re_res, font_path=args.vis_font_path)
                img_save_path = os.path.join(
                    args.output,
                    os.path.splitext(os.path.basename(image_file))[0] +
                    "_ser.jpg")

            cv2.imwrite(img_save_path, img_res)
            logger.info("save vis result to {}".format(img_save_path))
            if count > 0:
                total_time += elapse
            count += 1
            logger.info("Predict time of {}: {}".format(image_file, elapse))


if __name__ == "__main__":
    main(parse_args())