File size: 7,388 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle

__all__ = ['KIEMetric']


class VQAReTokenMetric(object):
    def __init__(self, main_indicator='hmean', **kwargs):
        self.main_indicator = main_indicator
        self.reset()

    def __call__(self, preds, batch, **kwargs):
        pred_relations, relations, entities = preds
        self.pred_relations_list.extend(pred_relations)
        self.relations_list.extend(relations)
        self.entities_list.extend(entities)

    def get_metric(self):
        gt_relations = []
        for b in range(len(self.relations_list)):
            rel_sent = []
            relation_list = self.relations_list[b]
            entitie_list = self.entities_list[b]
            head_len = relation_list[0, 0]
            if head_len > 0:
                entitie_start_list = entitie_list[1:entitie_list[0, 0] + 1, 0]
                entitie_end_list = entitie_list[1:entitie_list[0, 1] + 1, 1]
                entitie_label_list = entitie_list[1:entitie_list[0, 2] + 1, 2]
                for head, tail in zip(relation_list[1:head_len + 1, 0],
                                      relation_list[1:head_len + 1, 1]):
                    rel = {}
                    rel["head_id"] = head
                    rel["head"] = (entitie_start_list[head],
                                   entitie_end_list[head])
                    rel["head_type"] = entitie_label_list[head]

                    rel["tail_id"] = tail
                    rel["tail"] = (entitie_start_list[tail],
                                   entitie_end_list[tail])
                    rel["tail_type"] = entitie_label_list[tail]

                    rel["type"] = 1
                    rel_sent.append(rel)
            gt_relations.append(rel_sent)
        re_metrics = self.re_score(
            self.pred_relations_list, gt_relations, mode="boundaries")
        metrics = {
            "precision": re_metrics["ALL"]["p"],
            "recall": re_metrics["ALL"]["r"],
            "hmean": re_metrics["ALL"]["f1"],
        }
        self.reset()
        return metrics

    def reset(self):
        self.pred_relations_list = []
        self.relations_list = []
        self.entities_list = []

    def re_score(self, pred_relations, gt_relations, mode="strict"):
        """Evaluate RE predictions

        Args:
            pred_relations (list) :  list of list of predicted relations (several relations in each sentence)
            gt_relations (list) :    list of list of ground truth relations

                rel = { "head": (start_idx (inclusive), end_idx (exclusive)),
                        "tail": (start_idx (inclusive), end_idx (exclusive)),
                        "head_type": ent_type,
                        "tail_type": ent_type,
                        "type": rel_type}

            vocab (Vocab) :         dataset vocabulary
            mode (str) :            in 'strict' or 'boundaries'"""

        assert mode in ["strict", "boundaries"]

        relation_types = [v for v in [0, 1] if not v == 0]
        scores = {
            rel: {
                "tp": 0,
                "fp": 0,
                "fn": 0
            }
            for rel in relation_types + ["ALL"]
        }

        # Count GT relations and Predicted relations
        n_sents = len(gt_relations)
        n_rels = sum([len([rel for rel in sent]) for sent in gt_relations])
        n_found = sum([len([rel for rel in sent]) for sent in pred_relations])

        # Count TP, FP and FN per type
        for pred_sent, gt_sent in zip(pred_relations, gt_relations):
            for rel_type in relation_types:
                # strict mode takes argument types into account
                if mode == "strict":
                    pred_rels = {(rel["head"], rel["head_type"], rel["tail"],
                                  rel["tail_type"])
                                 for rel in pred_sent
                                 if rel["type"] == rel_type}
                    gt_rels = {(rel["head"], rel["head_type"], rel["tail"],
                                rel["tail_type"])
                               for rel in gt_sent if rel["type"] == rel_type}

                # boundaries mode only takes argument spans into account
                elif mode == "boundaries":
                    pred_rels = {(rel["head"], rel["tail"])
                                 for rel in pred_sent
                                 if rel["type"] == rel_type}
                    gt_rels = {(rel["head"], rel["tail"])
                               for rel in gt_sent if rel["type"] == rel_type}

                scores[rel_type]["tp"] += len(pred_rels & gt_rels)
                scores[rel_type]["fp"] += len(pred_rels - gt_rels)
                scores[rel_type]["fn"] += len(gt_rels - pred_rels)

        # Compute per entity Precision / Recall / F1
        for rel_type in scores.keys():
            if scores[rel_type]["tp"]:
                scores[rel_type]["p"] = scores[rel_type]["tp"] / (
                    scores[rel_type]["fp"] + scores[rel_type]["tp"])
                scores[rel_type]["r"] = scores[rel_type]["tp"] / (
                    scores[rel_type]["fn"] + scores[rel_type]["tp"])
            else:
                scores[rel_type]["p"], scores[rel_type]["r"] = 0, 0

            if not scores[rel_type]["p"] + scores[rel_type]["r"] == 0:
                scores[rel_type]["f1"] = (
                    2 * scores[rel_type]["p"] * scores[rel_type]["r"] /
                    (scores[rel_type]["p"] + scores[rel_type]["r"]))
            else:
                scores[rel_type]["f1"] = 0

        # Compute micro F1 Scores
        tp = sum([scores[rel_type]["tp"] for rel_type in relation_types])
        fp = sum([scores[rel_type]["fp"] for rel_type in relation_types])
        fn = sum([scores[rel_type]["fn"] for rel_type in relation_types])

        if tp:
            precision = tp / (tp + fp)
            recall = tp / (tp + fn)
            f1 = 2 * precision * recall / (precision + recall)

        else:
            precision, recall, f1 = 0, 0, 0

        scores["ALL"]["p"] = precision
        scores["ALL"]["r"] = recall
        scores["ALL"]["f1"] = f1
        scores["ALL"]["tp"] = tp
        scores["ALL"]["fp"] = fp
        scores["ALL"]["fn"] = fn

        # Compute Macro F1 Scores
        scores["ALL"]["Macro_f1"] = np.mean(
            [scores[ent_type]["f1"] for ent_type in relation_types])
        scores["ALL"]["Macro_p"] = np.mean(
            [scores[ent_type]["p"] for ent_type in relation_types])
        scores["ALL"]["Macro_r"] = np.mean(
            [scores[ent_type]["r"] for ent_type in relation_types])

        return scores