File size: 5,709 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/whai362/PSENet/blob/python3/models/head/psenet_head.py
"""

import paddle
from paddle import nn
from paddle.nn import functional as F
import numpy as np
from ppocr.utils.iou import iou


class PSELoss(nn.Layer):
    def __init__(self,
                 alpha,
                 ohem_ratio=3,
                 kernel_sample_mask='pred',
                 reduction='sum',
                 eps=1e-6,
                 **kwargs):
        """Implement PSE Loss.
        """
        super(PSELoss, self).__init__()
        assert reduction in ['sum', 'mean', 'none']
        self.alpha = alpha
        self.ohem_ratio = ohem_ratio
        self.kernel_sample_mask = kernel_sample_mask
        self.reduction = reduction
        self.eps = eps

    def forward(self, outputs, labels):
        predicts = outputs['maps']
        predicts = F.interpolate(predicts, scale_factor=4)

        texts = predicts[:, 0, :, :]
        kernels = predicts[:, 1:, :, :]
        gt_texts, gt_kernels, training_masks = labels[1:]

        # text loss
        selected_masks = self.ohem_batch(texts, gt_texts, training_masks)

        loss_text = self.dice_loss(texts, gt_texts, selected_masks)
        iou_text = iou((texts > 0).astype('int64'),
                       gt_texts,
                       training_masks,
                       reduce=False)
        losses = dict(loss_text=loss_text, iou_text=iou_text)

        # kernel loss
        loss_kernels = []
        if self.kernel_sample_mask == 'gt':
            selected_masks = gt_texts * training_masks
        elif self.kernel_sample_mask == 'pred':
            selected_masks = (
                F.sigmoid(texts) > 0.5).astype('float32') * training_masks

        for i in range(kernels.shape[1]):
            kernel_i = kernels[:, i, :, :]
            gt_kernel_i = gt_kernels[:, i, :, :]
            loss_kernel_i = self.dice_loss(kernel_i, gt_kernel_i,
                                           selected_masks)
            loss_kernels.append(loss_kernel_i)
        loss_kernels = paddle.mean(paddle.stack(loss_kernels, axis=1), axis=1)
        iou_kernel = iou((kernels[:, -1, :, :] > 0).astype('int64'),
                         gt_kernels[:, -1, :, :],
                         training_masks * gt_texts,
                         reduce=False)
        losses.update(dict(loss_kernels=loss_kernels, iou_kernel=iou_kernel))
        loss = self.alpha * loss_text + (1 - self.alpha) * loss_kernels
        losses['loss'] = loss
        if self.reduction == 'sum':
            losses = {x: paddle.sum(v) for x, v in losses.items()}
        elif self.reduction == 'mean':
            losses = {x: paddle.mean(v) for x, v in losses.items()}
        return losses

    def dice_loss(self, input, target, mask):
        input = F.sigmoid(input)

        input = input.reshape([input.shape[0], -1])
        target = target.reshape([target.shape[0], -1])
        mask = mask.reshape([mask.shape[0], -1])

        input = input * mask
        target = target * mask

        a = paddle.sum(input * target, 1)
        b = paddle.sum(input * input, 1) + self.eps
        c = paddle.sum(target * target, 1) + self.eps
        d = (2 * a) / (b + c)
        return 1 - d

    def ohem_single(self, score, gt_text, training_mask, ohem_ratio=3):
        pos_num = int(paddle.sum((gt_text > 0.5).astype('float32'))) - int(
            paddle.sum(
                paddle.logical_and((gt_text > 0.5), (training_mask <= 0.5))
                .astype('float32')))

        if pos_num == 0:
            selected_mask = training_mask
            selected_mask = selected_mask.reshape(
                [1, selected_mask.shape[0], selected_mask.shape[1]]).astype(
                    'float32')
            return selected_mask

        neg_num = int(paddle.sum((gt_text <= 0.5).astype('float32')))
        neg_num = int(min(pos_num * ohem_ratio, neg_num))

        if neg_num == 0:
            selected_mask = training_mask
            selected_mask = selected_mask.reshape(
                [1, selected_mask.shape[0], selected_mask.shape[1]]).astype(
                    'float32')
            return selected_mask

        neg_score = paddle.masked_select(score, gt_text <= 0.5)
        neg_score_sorted = paddle.sort(-neg_score)
        threshold = -neg_score_sorted[neg_num - 1]

        selected_mask = paddle.logical_and(
            paddle.logical_or((score >= threshold), (gt_text > 0.5)),
            (training_mask > 0.5))
        selected_mask = selected_mask.reshape(
            [1, selected_mask.shape[0], selected_mask.shape[1]]).astype(
                'float32')
        return selected_mask

    def ohem_batch(self, scores, gt_texts, training_masks, ohem_ratio=3):
        selected_masks = []
        for i in range(scores.shape[0]):
            selected_masks.append(
                self.ohem_single(scores[i, :, :], gt_texts[i, :, :],
                                 training_masks[i, :, :], ohem_ratio))

        selected_masks = paddle.concat(selected_masks, 0).astype('float32')
        return selected_masks