File size: 5,433 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/models/losses/basic_loss.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

import paddle
from paddle import nn
import paddle.nn.functional as F


class BalanceLoss(nn.Layer):
    def __init__(self,
                 balance_loss=True,
                 main_loss_type='DiceLoss',
                 negative_ratio=3,
                 return_origin=False,
                 eps=1e-6,
                 **kwargs):
        """
               The BalanceLoss for Differentiable Binarization text detection
               args:
                   balance_loss (bool): whether balance loss or not, default is True
                   main_loss_type (str): can only be one of ['CrossEntropy','DiceLoss',
                       'Euclidean','BCELoss', 'MaskL1Loss'], default is  'DiceLoss'.
                   negative_ratio (int|float): float, default is 3.
                   return_origin (bool): whether return unbalanced loss or not, default is False.
                   eps (float): default is 1e-6.
               """
        super(BalanceLoss, self).__init__()
        self.balance_loss = balance_loss
        self.main_loss_type = main_loss_type
        self.negative_ratio = negative_ratio
        self.return_origin = return_origin
        self.eps = eps

        if self.main_loss_type == "CrossEntropy":
            self.loss = nn.CrossEntropyLoss()
        elif self.main_loss_type == "Euclidean":
            self.loss = nn.MSELoss()
        elif self.main_loss_type == "DiceLoss":
            self.loss = DiceLoss(self.eps)
        elif self.main_loss_type == "BCELoss":
            self.loss = BCELoss(reduction='none')
        elif self.main_loss_type == "MaskL1Loss":
            self.loss = MaskL1Loss(self.eps)
        else:
            loss_type = [
                'CrossEntropy', 'DiceLoss', 'Euclidean', 'BCELoss', 'MaskL1Loss'
            ]
            raise Exception(
                "main_loss_type in BalanceLoss() can only be one of {}".format(
                    loss_type))

    def forward(self, pred, gt, mask=None):
        """
        The BalanceLoss for Differentiable Binarization text detection
        args:
            pred (variable): predicted feature maps.
            gt (variable): ground truth feature maps.
            mask (variable): masked maps.
        return: (variable) balanced loss
        """
        positive = gt * mask
        negative = (1 - gt) * mask

        positive_count = int(positive.sum())
        negative_count = int(
            min(negative.sum(), positive_count * self.negative_ratio))
        loss = self.loss(pred, gt, mask=mask)

        if not self.balance_loss:
            return loss

        positive_loss = positive * loss
        negative_loss = negative * loss
        negative_loss = paddle.reshape(negative_loss, shape=[-1])
        if negative_count > 0:
            sort_loss = negative_loss.sort(descending=True)
            negative_loss = sort_loss[:negative_count]
            # negative_loss, _ = paddle.topk(negative_loss, k=negative_count_int)
            balance_loss = (positive_loss.sum() + negative_loss.sum()) / (
                positive_count + negative_count + self.eps)
        else:
            balance_loss = positive_loss.sum() / (positive_count + self.eps)
        if self.return_origin:
            return balance_loss, loss

        return balance_loss


class DiceLoss(nn.Layer):
    def __init__(self, eps=1e-6):
        super(DiceLoss, self).__init__()
        self.eps = eps

    def forward(self, pred, gt, mask, weights=None):
        """
        DiceLoss function.
        """

        assert pred.shape == gt.shape
        assert pred.shape == mask.shape
        if weights is not None:
            assert weights.shape == mask.shape
            mask = weights * mask
        intersection = paddle.sum(pred * gt * mask)

        union = paddle.sum(pred * mask) + paddle.sum(gt * mask) + self.eps
        loss = 1 - 2.0 * intersection / union
        assert loss <= 1
        return loss


class MaskL1Loss(nn.Layer):
    def __init__(self, eps=1e-6):
        super(MaskL1Loss, self).__init__()
        self.eps = eps

    def forward(self, pred, gt, mask):
        """
        Mask L1 Loss
        """
        loss = (paddle.abs(pred - gt) * mask).sum() / (mask.sum() + self.eps)
        loss = paddle.mean(loss)
        return loss


class BCELoss(nn.Layer):
    def __init__(self, reduction='mean'):
        super(BCELoss, self).__init__()
        self.reduction = reduction

    def forward(self, input, label, mask=None, weight=None, name=None):
        loss = F.binary_cross_entropy(input, label, reduction=self.reduction)
        return loss