File size: 5,434 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from paddle.nn import L1Loss
from paddle.nn import MSELoss as L2Loss
from paddle.nn import SmoothL1Loss


class CELoss(nn.Layer):
    def __init__(self, epsilon=None):
        super().__init__()
        if epsilon is not None and (epsilon <= 0 or epsilon >= 1):
            epsilon = None
        self.epsilon = epsilon

    def _labelsmoothing(self, target, class_num):
        if target.shape[-1] != class_num:
            one_hot_target = F.one_hot(target, class_num)
        else:
            one_hot_target = target
        soft_target = F.label_smooth(one_hot_target, epsilon=self.epsilon)
        soft_target = paddle.reshape(soft_target, shape=[-1, class_num])
        return soft_target

    def forward(self, x, label):
        loss_dict = {}
        if self.epsilon is not None:
            class_num = x.shape[-1]
            label = self._labelsmoothing(label, class_num)
            x = -F.log_softmax(x, axis=-1)
            loss = paddle.sum(x * label, axis=-1)
        else:
            if label.shape[-1] == x.shape[-1]:
                label = F.softmax(label, axis=-1)
                soft_label = True
            else:
                soft_label = False
            loss = F.cross_entropy(x, label=label, soft_label=soft_label)
        return loss


class KLJSLoss(object):
    def __init__(self, mode='kl'):
        assert mode in ['kl', 'js', 'KL', 'JS'
                        ], "mode can only be one of ['kl', 'KL', 'js', 'JS']"
        self.mode = mode

    def __call__(self, p1, p2, reduction="mean", eps=1e-5):

        if self.mode.lower() == 'kl':
            loss = paddle.multiply(p2,
                                   paddle.log((p2 + eps) / (p1 + eps) + eps))
            loss += paddle.multiply(p1,
                                    paddle.log((p1 + eps) / (p2 + eps) + eps))
            loss *= 0.5
        elif self.mode.lower() == "js":
            loss = paddle.multiply(
                p2, paddle.log((2 * p2 + eps) / (p1 + p2 + eps) + eps))
            loss += paddle.multiply(
                p1, paddle.log((2 * p1 + eps) / (p1 + p2 + eps) + eps))
            loss *= 0.5
        else:
            raise ValueError(
                "The mode.lower() if KLJSLoss should be one of ['kl', 'js']")

        if reduction == "mean":
            loss = paddle.mean(loss, axis=[1, 2])
        elif reduction == "none" or reduction is None:
            return loss
        else:
            loss = paddle.sum(loss, axis=[1, 2])

        return loss


class DMLLoss(nn.Layer):
    """
    DMLLoss
    """

    def __init__(self, act=None, use_log=False):
        super().__init__()
        if act is not None:
            assert act in ["softmax", "sigmoid"]
        if act == "softmax":
            self.act = nn.Softmax(axis=-1)
        elif act == "sigmoid":
            self.act = nn.Sigmoid()
        else:
            self.act = None

        self.use_log = use_log
        self.jskl_loss = KLJSLoss(mode="kl")

    def _kldiv(self, x, target):
        eps = 1.0e-10
        loss = target * (paddle.log(target + eps) - x)
        # batch mean loss
        loss = paddle.sum(loss) / loss.shape[0]
        return loss

    def forward(self, out1, out2):
        if self.act is not None:
            out1 = self.act(out1) + 1e-10
            out2 = self.act(out2) + 1e-10
        if self.use_log:
            # for recognition distillation, log is needed for feature map
            log_out1 = paddle.log(out1)
            log_out2 = paddle.log(out2)
            loss = (
                self._kldiv(log_out1, out2) + self._kldiv(log_out2, out1)) / 2.0
        else:
            # for detection distillation log is not needed
            loss = self.jskl_loss(out1, out2)
        return loss


class DistanceLoss(nn.Layer):
    """
    DistanceLoss:
        mode: loss mode
    """

    def __init__(self, mode="l2", **kargs):
        super().__init__()
        assert mode in ["l1", "l2", "smooth_l1"]
        if mode == "l1":
            self.loss_func = nn.L1Loss(**kargs)
        elif mode == "l2":
            self.loss_func = nn.MSELoss(**kargs)
        elif mode == "smooth_l1":
            self.loss_func = nn.SmoothL1Loss(**kargs)

    def forward(self, x, y):
        return self.loss_func(x, y)


class LossFromOutput(nn.Layer):
    def __init__(self, key='loss', reduction='none'):
        super().__init__()
        self.key = key
        self.reduction = reduction

    def forward(self, predicts, batch):
        loss = predicts
        if self.key is not None and isinstance(predicts, dict):
            loss = loss[self.key]
        if self.reduction == 'mean':
            loss = paddle.mean(loss)
        elif self.reduction == 'sum':
            loss = paddle.sum(loss)
        return {'loss': loss}