File size: 1,645 Bytes
a89d9fd 17e862b 5e7197d a89d9fd 17e862b a89d9fd 17e862b 5e7197d a89d9fd 17e862b a89d9fd 17e862b d1182db a89d9fd d1182db a89d9fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import os, io
from paddleocr import PaddleOCR, draw_ocr,PPStructure
from ppocr.utils.visual import draw_ser_results
from PIL import Image, ImageDraw
import gradio as gr
def inference__ppocr(img_path):
ocr = PaddleOCR(
rec_char_dict_path='zhtw_common_dict.txt',
use_gpu=False,
rec_image_shape="3, 48, 320"
)
result = ocr.ocr(img_path)
for idx in range(len(result)):
res = result[idx]
for line in res:
print(line)
result = result[0]
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] if line[1] else '' for line in result] # 確保在無文字時 txts 還是個空字串
scores = [line[1][1] for line in result]
im_show_pil = draw_ocr(image, boxes, txts, scores, font_path="./simfang.ttf")
return im_show_pil, "\n".join(txts)
def inference__ppstructure(img_path):
ppsutructure = PPStructure(
rec_char_dict_path='zhtw_common_dict.txt',
use_gpu=False,
rec_image_shape="3, 48, 320",
ser_dict_path='ppocr/utils/dict/kie/clinical_class_list.txt'
)
result,res2 = ppsutructure.__call__(img_path)
image = draw_ser_results(img_path,result,font_path='./simfang.ttf')
result = [''.join(f"{element['pred']}:{element['transcription']}") for element in result if element['pred']!='O']
return image, "\n".join(result)
gr.Interface(
inference__ppstructure,
[gr.Image(type='filepath', label='圖片上傳')],
outputs=[
gr.Image(type="pil", label="識別結果"),
"text"
],
).launch(debug=True) |