Calistus commited on
Commit
63bd143
·
1 Parent(s): b2a1f6c

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -48
app.py DELETED
@@ -1,48 +0,0 @@
1
- pip3 install -q transformers gradio
2
-
3
- from transformers import AutoModelForSequenceClassification
4
- from transformers import TFAutoModelForSequenceClassification
5
- from transformers import AutoTokenizer, AutoConfig
6
- import numpy as np
7
- from scipy.special import softmax
8
- import gradio as gr
9
-
10
- # Requirements
11
- model_path = f"Calistus/test_trainer"
12
- tokenizer = AutoTokenizer.from_pretrained('bert-base-cased')
13
- config = AutoConfig.from_pretrained(model_path)
14
- model = AutoModelForSequenceClassification.from_pretrained(model_path)
15
-
16
- # Preprocess text (username and link placeholders)
17
- def preprocess(text):
18
- new_text = []
19
- for t in text.split(" "):
20
- t = '@user' if t.startswith('@') and len(t) > 1 else t
21
- t = 'http' if t.startswith('http') else t
22
- new_text.append(t)
23
- return " ".join(new_text)
24
-
25
-
26
- def sentiment_analysis(text):
27
- text = preprocess(text)
28
-
29
- # PyTorch-based models
30
- encoded_input = tokenizer(text, return_tensors='pt')
31
- output = model(**encoded_input)
32
- scores_ = output[0][0].detach().numpy()
33
- scores_ = softmax(scores_)
34
-
35
- # Format output dict of scores
36
- labels = ['Negative', 'Neutral', 'Positive']
37
- scores = {l:float(s) for (l,s) in zip(labels, scores_) }
38
-
39
- return scores
40
-
41
- app = gr.Interface(
42
- fn=sentiment_analysis,
43
- inputs=gr.Textbox(placeholder="Write your tweet here..."),
44
- outputs="label",
45
- interpretation="default",
46
- examples=[["Please don't listen to anyone. Vaccinate your child"],['My kid has a lump on his hand because of the vaccine']])
47
-
48
- app.launch()