Spaces:
Runtime error
Runtime error
Delete app.py
Browse files
app.py
DELETED
@@ -1,48 +0,0 @@
|
|
1 |
-
pip3 install -q transformers gradio
|
2 |
-
|
3 |
-
from transformers import AutoModelForSequenceClassification
|
4 |
-
from transformers import TFAutoModelForSequenceClassification
|
5 |
-
from transformers import AutoTokenizer, AutoConfig
|
6 |
-
import numpy as np
|
7 |
-
from scipy.special import softmax
|
8 |
-
import gradio as gr
|
9 |
-
|
10 |
-
# Requirements
|
11 |
-
model_path = f"Calistus/test_trainer"
|
12 |
-
tokenizer = AutoTokenizer.from_pretrained('bert-base-cased')
|
13 |
-
config = AutoConfig.from_pretrained(model_path)
|
14 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
15 |
-
|
16 |
-
# Preprocess text (username and link placeholders)
|
17 |
-
def preprocess(text):
|
18 |
-
new_text = []
|
19 |
-
for t in text.split(" "):
|
20 |
-
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
21 |
-
t = 'http' if t.startswith('http') else t
|
22 |
-
new_text.append(t)
|
23 |
-
return " ".join(new_text)
|
24 |
-
|
25 |
-
|
26 |
-
def sentiment_analysis(text):
|
27 |
-
text = preprocess(text)
|
28 |
-
|
29 |
-
# PyTorch-based models
|
30 |
-
encoded_input = tokenizer(text, return_tensors='pt')
|
31 |
-
output = model(**encoded_input)
|
32 |
-
scores_ = output[0][0].detach().numpy()
|
33 |
-
scores_ = softmax(scores_)
|
34 |
-
|
35 |
-
# Format output dict of scores
|
36 |
-
labels = ['Negative', 'Neutral', 'Positive']
|
37 |
-
scores = {l:float(s) for (l,s) in zip(labels, scores_) }
|
38 |
-
|
39 |
-
return scores
|
40 |
-
|
41 |
-
app = gr.Interface(
|
42 |
-
fn=sentiment_analysis,
|
43 |
-
inputs=gr.Textbox(placeholder="Write your tweet here..."),
|
44 |
-
outputs="label",
|
45 |
-
interpretation="default",
|
46 |
-
examples=[["Please don't listen to anyone. Vaccinate your child"],['My kid has a lump on his hand because of the vaccine']])
|
47 |
-
|
48 |
-
app.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|