Calistus commited on
Commit
b2a1f6c
·
1 Parent(s): e6fd1af

Delete gradio_app.py

Browse files
Files changed (1) hide show
  1. gradio_app.py +0 -57
gradio_app.py DELETED
@@ -1,57 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """gradio_app.ipynb
3
-
4
- Automatically generated by Colaboratory.
5
-
6
- Original file is located at
7
- https://colab.research.google.com/drive/1wrYbbZyMO4uVq2I9l2bKwVvKsH3BwbTD
8
- """
9
-
10
- !pip3 install -q transformers gradio
11
-
12
- from transformers import AutoModelForSequenceClassification
13
- from transformers import TFAutoModelForSequenceClassification
14
- from transformers import AutoTokenizer, AutoConfig
15
- import numpy as np
16
- from scipy.special import softmax
17
- import gradio as gr
18
-
19
- # Requirements
20
- model_path = f"Calistus/test_trainer"
21
- tokenizer = AutoTokenizer.from_pretrained('bert-base-cased')
22
- config = AutoConfig.from_pretrained(model_path)
23
- model = AutoModelForSequenceClassification.from_pretrained(model_path)
24
-
25
- # Preprocess text (username and link placeholders)
26
- def preprocess(text):
27
- new_text = []
28
- for t in text.split(" "):
29
- t = '@user' if t.startswith('@') and len(t) > 1 else t
30
- t = 'http' if t.startswith('http') else t
31
- new_text.append(t)
32
- return " ".join(new_text)
33
-
34
-
35
- def sentiment_analysis(text):
36
- text = preprocess(text)
37
-
38
- # PyTorch-based models
39
- encoded_input = tokenizer(text, return_tensors='pt')
40
- output = model(**encoded_input)
41
- scores_ = output[0][0].detach().numpy()
42
- scores_ = softmax(scores_)
43
-
44
- # Format output dict of scores
45
- labels = ['Negative', 'Neutral', 'Positive']
46
- scores = {l:float(s) for (l,s) in zip(labels, scores_) }
47
-
48
- return scores
49
-
50
- app = gr.Interface(
51
- fn=sentiment_analysis,
52
- inputs=gr.Textbox(placeholder="Write your tweet here..."),
53
- outputs="label",
54
- interpretation="default",
55
- examples=[["Please don't listen to anyone. Vaccinate your child"],['My kid has a lump on his hand because of the vaccine']])
56
-
57
- app.launch()