Spaces:
Runtime error
Runtime error
File size: 2,000 Bytes
ecb51a9 64ae206 e3db5bc 1681c52 e3db5bc 109cd63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer, AutoConfig
import numpy as np
from scipy.special import softmax
import gradio as gr
# Requirements
model_path = f"Calistus/test_trainer"
tokenizer = AutoTokenizer.from_pretrained('bert-base-cased')
config = AutoConfig.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path)
# Preprocess text (username and link placeholders)
def preprocess(text):
new_text = []
for t in text.split(" "):
t = '@user' if t.startswith('@') and len(t) > 1 else t
t = 'http' if t.startswith('http') else t
new_text.append(t)
return " ".join(new_text)
def sentiment_analysis(text):
text = preprocess(text)
# PyTorch-based models
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
scores_ = output[0][0].detach().numpy()
scores_ = softmax(scores_)
# Format output dict of scores
labels = ['Negative', 'Neutral', 'Positive']
scores = {l:float(s) for (l,s) in zip(labels, scores_) }
return scores
app = gr.Interface(
fn=sentiment_analysis,
inputs=gr.Textbox(placeholder="Write your tweet here..."),
outputs="label",
interpretation="default",
examples=[["Please don't listen to anyone. Vaccinate your child"],
['My kid has a lump on his hand because of the vaccine'],
['my church does not allow any form of vaccination']],
title= 'Sentiment Analysis App',
description= 'This app is designed to help you gauge the emotions and opinions expressed in text, particularly focusing on discussions related to measles vaccination on X(formerly Twitter). Simply input a tweet or any text, and the app will swiftly categorize it into one of three categories: Negative, Neutral, or Positive sentiment. ')
if __name__ == "__main__":
app.launch() |