Cachoups commited on
Commit
f203192
·
verified ·
1 Parent(s): ced1a91

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -55
app.py CHANGED
@@ -80,9 +80,9 @@ def process_paragraph_1_sent(paragraph):
80
  try:
81
  paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
82
  selected_paragraph = stored_paragraphs_1[paragraph_index]
83
- sentiment = text_to_sentiment(selected_paragraph)
84
-
85
- return sentiment
86
  except (IndexError, ValueError):
87
  return "Error"
88
  def process_paragraph_1_sent_tone(paragraph):
@@ -113,9 +113,9 @@ def process_paragraph_2_sent(paragraph):
113
  try:
114
  paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
115
  selected_paragraph = stored_paragraphs_2[paragraph_index]
116
- sentiment = text_to_sentiment(selected_paragraph)
117
-
118
- return sentiment
119
  except (IndexError, ValueError):
120
  return "Error"
121
  def process_paragraph_2_sent_tone(paragraph):
@@ -448,29 +448,30 @@ with gr.Blocks(theme='gradio/soft',js=js_func) as demo:
448
 
449
  selected_paragraph_1 = gr.Textbox(label="Selected Paragraph 1 Content", lines=4)
450
  paragraph_1_dropdown.select(fn=show1, inputs = paragraph_1_dropdown, outputs=selected_paragraph_1)
451
- summarize_btn1 = gr.Button("Summarize Text from PDF 1")
452
- summary_textbox_1 = gr.Textbox(label="Summary for PDF 1", lines=2)
453
-
454
- # Summarize the selected paragraph from PDF 1
455
- summarize_btn1.click(fn=lambda p: process_paragraph_1_sum(p), inputs=paragraph_1_dropdown, outputs=summary_textbox_1)
456
-
457
- sentiment_btn1 = gr.Button("Classify Financial Tone from PDF 1")
458
- sentiment_textbox_1 = gr.Textbox(label="Classification for PDF 1", lines=1)
459
-
460
- # Classify the financial tone of the selected paragraph from PDF 1
461
- sentiment_btn1.click(fn=lambda p: process_paragraph_1_sent(p), inputs=paragraph_1_dropdown, outputs=sentiment_textbox_1)
462
-
463
- analyze_btn1 = gr.Button("Analyze Financial Tone on each sentence with FinBERT-tone")
464
- fin_spans_1 = gr.HighlightedText(label="Financial Tone Analysis for PDF 1")
465
-
466
- # Analyze financial tone on each sentence using FinBERT-tone
467
- analyze_btn1.click(fn=lambda p: process_paragraph_1_sent_tone(p), inputs=paragraph_1_dropdown, outputs=fin_spans_1)
468
-
469
- analyze_btn1_ = gr.Button("Analyze Financial Tone on each sentence with ProsusAI/finbert")
470
- fin_spans_1_ = gr.HighlightedText(label="Financial Tone Analysis for PDF 1 (Bis)")
471
-
472
- # Analyze financial tone using ProsusAI/finbert
473
- analyze_btn1_.click(fn=lambda p: process_paragraph_1_sent_tone_bis(p), inputs=paragraph_1_dropdown, outputs=fin_spans_1_)
 
474
 
475
  # Process the selected paragraph from PDF 2
476
  with gr.Column():
@@ -478,32 +479,33 @@ with gr.Blocks(theme='gradio/soft',js=js_func) as demo:
478
 
479
  selected_paragraph_2 = gr.Textbox(label="Selected Paragraph 2 Content", lines=4)
480
  paragraph_2_dropdown.select(fn=show2, inputs = paragraph_2_dropdown, outputs=selected_paragraph_2)
481
- # Display selected paragraph from PDF 2
482
- selected_paragraph_2.change(fn=show2, inputs=paragraph_2_dropdown, outputs=selected_paragraph_2)
483
-
484
- summarize_btn2 = gr.Button("Summarize Text from PDF 2")
485
- summary_textbox_2 = gr.Textbox(label="Summary for PDF 2", lines=2)
486
-
487
- # Summarize the selected paragraph from PDF 2
488
- summarize_btn2.click(fn=lambda p: process_paragraph_2_sum(p), inputs=paragraph_2_dropdown, outputs=summary_textbox_2)
489
-
490
- sentiment_btn2 = gr.Button("Classify Financial Tone from PDF 2")
491
- sentiment_textbox_2 = gr.Textbox(label="Classification for PDF 2", lines=1)
492
-
493
- # Classify the financial tone of the selected paragraph from PDF 2
494
- sentiment_btn2.click(fn=lambda p: process_paragraph_2_sent(p), inputs=paragraph_2_dropdown, outputs=sentiment_textbox_2)
495
-
496
- analyze_btn2 = gr.Button("Analyze Financial Tone on each sentence with FinBERT-tone")
497
- fin_spans_2 = gr.HighlightedText(label="Financial Tone Analysis for PDF 2")
498
-
499
- # Analyze financial tone on each sentence using FinBERT-tone for PDF 2
500
- analyze_btn2.click(fn=lambda p: process_paragraph_2_sent_tone(p), inputs=paragraph_2_dropdown, outputs=fin_spans_2)
501
-
502
- analyze_btn2_ = gr.Button("Analyze Financial Tone on each sentence with ProsusAI/finbert")
503
- fin_spans_2_ = gr.HighlightedText(label="Financial Tone Analysis for PDF 2 (Bis)")
504
-
505
- # Analyze financial tone using ProsusAI/finbert for PDF 2
506
- analyze_btn2_.click(fn=lambda p: process_paragraph_2_sent_tone_bis(p), inputs=paragraph_2_dropdown, outputs=fin_spans_2_)
 
507
 
508
 
509
  with gr.Tab("Financial Report Table Analysis"):
 
80
  try:
81
  paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
82
  selected_paragraph = stored_paragraphs_1[paragraph_index]
83
+ result = text_to_sentiment(selected_paragraph)
84
+ formatted_results = "\n".join([f"{result['label']}: {result['score']:.2f}" for result in results])
85
+ return formatted_results
86
  except (IndexError, ValueError):
87
  return "Error"
88
  def process_paragraph_1_sent_tone(paragraph):
 
113
  try:
114
  paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
115
  selected_paragraph = stored_paragraphs_2[paragraph_index]
116
+ result = text_to_sentiment(selected_paragraph)
117
+ formatted_results = "\n".join([f"{result['label']}: {result['score']:.2f}" for result in results])
118
+ return formatted_results
119
  except (IndexError, ValueError):
120
  return "Error"
121
  def process_paragraph_2_sent_tone(paragraph):
 
448
 
449
  selected_paragraph_1 = gr.Textbox(label="Selected Paragraph 1 Content", lines=4)
450
  paragraph_1_dropdown.select(fn=show1, inputs = paragraph_1_dropdown, outputs=selected_paragraph_1)
451
+ with gr.Group():
452
+ summarize_btn1 = gr.Button("Summarize Text from PDF 1")
453
+ summary_textbox_1 = gr.Textbox(label="Summary for PDF 1", lines=2)
454
+
455
+ # Summarize the selected paragraph from PDF 1
456
+ summarize_btn1.click(fn=lambda p: process_paragraph_1_sum(p), inputs=paragraph_1_dropdown, outputs=summary_textbox_1)
457
+
458
+ sentiment_btn1 = gr.Button("Classify Financial Tone from PDF 1")
459
+ sentiment_textbox_1 = gr.Label(label="Classification for PDF 1", lines=1)
460
+
461
+ # Classify the financial tone of the selected paragraph from PDF 1
462
+ sentiment_btn1.click(fn=lambda p: process_paragraph_1_sent(p), inputs=paragraph_1_dropdown, outputs=sentiment_textbox_1)
463
+
464
+ analyze_btn1 = gr.Button("Analyze Financial Tone on each sentence with FinBERT-tone")
465
+ fin_spans_1 = gr.HighlightedText(label="Financial Tone Analysis for PDF 1")
466
+
467
+ # Analyze financial tone on each sentence using FinBERT-tone
468
+ analyze_btn1.click(fn=lambda p: process_paragraph_1_sent_tone(p), inputs=paragraph_1_dropdown, outputs=fin_spans_1)
469
+
470
+ analyze_btn1_ = gr.Button("Analyze Financial Tone on each sentence with ProsusAI/finbert")
471
+ fin_spans_1_ = gr.HighlightedText(label="Financial Tone Analysis for PDF 1 (Bis)")
472
+
473
+ # Analyze financial tone using ProsusAI/finbert
474
+ analyze_btn1_.click(fn=lambda p: process_paragraph_1_sent_tone_bis(p), inputs=paragraph_1_dropdown, outputs=fin_spans_1_)
475
 
476
  # Process the selected paragraph from PDF 2
477
  with gr.Column():
 
479
 
480
  selected_paragraph_2 = gr.Textbox(label="Selected Paragraph 2 Content", lines=4)
481
  paragraph_2_dropdown.select(fn=show2, inputs = paragraph_2_dropdown, outputs=selected_paragraph_2)
482
+ with gr.Group():
483
+ # Display selected paragraph from PDF 2
484
+ selected_paragraph_2.change(fn=show2, inputs=paragraph_2_dropdown, outputs=selected_paragraph_2)
485
+
486
+ summarize_btn2 = gr.Button("Summarize Text from PDF 2")
487
+ summary_textbox_2 = gr.Textbox(label="Summary for PDF 2", lines=2)
488
+
489
+ # Summarize the selected paragraph from PDF 2
490
+ summarize_btn2.click(fn=lambda p: process_paragraph_2_sum(p), inputs=paragraph_2_dropdown, outputs=summary_textbox_2)
491
+
492
+ sentiment_btn2 = gr.Button("Classify Financial Tone from PDF 2")
493
+ sentiment_textbox_2 = gr.Textbox(label="Classification for PDF 2", lines=1)
494
+
495
+ # Classify the financial tone of the selected paragraph from PDF 2
496
+ sentiment_btn2.click(fn=lambda p: process_paragraph_2_sent(p), inputs=paragraph_2_dropdown, outputs=sentiment_textbox_2)
497
+
498
+ analyze_btn2 = gr.Button("Analyze Financial Tone on each sentence with FinBERT-tone")
499
+ fin_spans_2 = gr.HighlightedText(label="Financial Tone Analysis for PDF 2")
500
+
501
+ # Analyze financial tone on each sentence using FinBERT-tone for PDF 2
502
+ analyze_btn2.click(fn=lambda p: process_paragraph_2_sent_tone(p), inputs=paragraph_2_dropdown, outputs=fin_spans_2)
503
+
504
+ analyze_btn2_ = gr.Button("Analyze Financial Tone on each sentence with ProsusAI/finbert")
505
+ fin_spans_2_ = gr.HighlightedText(label="Financial Tone Analysis for PDF 2 (Bis)")
506
+
507
+ # Analyze financial tone using ProsusAI/finbert for PDF 2
508
+ analyze_btn2_.click(fn=lambda p: process_paragraph_2_sent_tone_bis(p), inputs=paragraph_2_dropdown, outputs=fin_spans_2_)
509
 
510
 
511
  with gr.Tab("Financial Report Table Analysis"):