Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -20,6 +20,7 @@ def make_spans(text, results):
|
|
20 |
# Initialize pipelines
|
21 |
summarizer = pipeline("summarization", model="human-centered-summarization/financial-summarization-pegasus")
|
22 |
fin_model = pipeline("sentiment-analysis", model='yiyanghkust/finbert-tone', tokenizer='yiyanghkust/finbert-tone')
|
|
|
23 |
|
24 |
def summarize_text(text):
|
25 |
resp = summarizer(text)
|
@@ -32,6 +33,9 @@ def text_to_sentiment(text):
|
|
32 |
def fin_ext(text):
|
33 |
results = fin_model(split_in_sentences(text))
|
34 |
return make_spans(text, results)
|
|
|
|
|
|
|
35 |
|
36 |
def extract_and_summarize(pdf1, pdf2):
|
37 |
if not pdf1 or not pdf2:
|
@@ -97,51 +101,103 @@ with gr.Blocks() as demo:
|
|
97 |
# Process the selected paragraph from PDF 1
|
98 |
with gr.Column():
|
99 |
gr.Markdown("### PDF 1 Analysis")
|
100 |
-
def
|
101 |
try:
|
102 |
paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
|
103 |
selected_paragraph = stored_paragraphs_1[paragraph_index]
|
104 |
summary = summarize_text(selected_paragraph)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
sentiment = text_to_sentiment(selected_paragraph)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
fin_spans = fin_ext(selected_paragraph)
|
107 |
-
return
|
108 |
except (IndexError, ValueError):
|
109 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
selected_paragraph_1 = gr.Textbox(label="Selected Paragraph 1 Content", lines=4)
|
111 |
selected_paragraph_1.change(show, paragraph_1_dropdown, selected_paragraph_1)
|
112 |
summarize_btn1 = gr.Button("Summarize Text from PDF 1")
|
113 |
summary_textbox_1 = gr.Textbox(label="Summary for PDF 1", lines=2)
|
114 |
-
summarize_btn1.click(fn=lambda p:
|
115 |
sentiment_btn1 = gr.Button("Classify Financial Tone from PDF 1")
|
116 |
sentiment_textbox_1 = gr.Textbox(label="Classification for PDF 1", lines=1)
|
117 |
-
sentiment_btn1.click(fn=lambda p:
|
118 |
-
analyze_btn1 = gr.Button("Analyze Financial Tone on each sentence")
|
119 |
fin_spans_1 = gr.HighlightedText(label="Financial Tone Analysis for PDF 1")
|
120 |
-
analyze_btn1.click(fn=lambda p:
|
|
|
|
|
|
|
121 |
|
122 |
# Process the selected paragraph from PDF 2
|
123 |
with gr.Column():
|
124 |
gr.Markdown("### PDF 2 Analysis")
|
125 |
-
def
|
126 |
try:
|
127 |
paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
|
128 |
-
selected_paragraph =
|
129 |
summary = summarize_text(selected_paragraph)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
sentiment = text_to_sentiment(selected_paragraph)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
fin_spans = fin_ext(selected_paragraph)
|
132 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
except (IndexError, ValueError):
|
134 |
-
return
|
135 |
selected_paragraph_2 = gr.Textbox(label="Selected Paragraph 2 Content", lines=4)
|
136 |
selected_paragraph_2.change(show, paragraph_2_dropdown, selected_paragraph_2)
|
137 |
summarize_btn2 = gr.Button("Summarize Text from PDF 2")
|
138 |
summary_textbox_2 = gr.Textbox(label="Summary for PDF 2", lines=2)
|
139 |
-
summarize_btn2.click(fn=lambda p:
|
140 |
sentiment_btn2 = gr.Button("Classify Financial Tone from PDF 2")
|
141 |
sentiment_textbox_2 = gr.Textbox(label="Classification for PDF 2", lines=1)
|
142 |
-
sentiment_btn2.click(fn=lambda p:
|
143 |
-
analyze_btn2 = gr.Button("Analyze Financial Tone on each sentence")
|
144 |
fin_spans_2 = gr.HighlightedText(label="Financial Tone Analysis for PDF 2")
|
145 |
-
analyze_btn2.click(fn=lambda p:
|
|
|
|
|
|
|
146 |
|
147 |
demo.launch()
|
|
|
20 |
# Initialize pipelines
|
21 |
summarizer = pipeline("summarization", model="human-centered-summarization/financial-summarization-pegasus")
|
22 |
fin_model = pipeline("sentiment-analysis", model='yiyanghkust/finbert-tone', tokenizer='yiyanghkust/finbert-tone')
|
23 |
+
fin_model_bis = pipeline("sentiment-analysis", model='ProsusAI/finbert', tokenizer='ProsusAI/finbert')
|
24 |
|
25 |
def summarize_text(text):
|
26 |
resp = summarizer(text)
|
|
|
33 |
def fin_ext(text):
|
34 |
results = fin_model(split_in_sentences(text))
|
35 |
return make_spans(text, results)
|
36 |
+
def fin_ext_bis(text):
|
37 |
+
results = fin_model_bis(split_in_sentences(text))
|
38 |
+
return make_spans(text, results)
|
39 |
|
40 |
def extract_and_summarize(pdf1, pdf2):
|
41 |
if not pdf1 or not pdf2:
|
|
|
101 |
# Process the selected paragraph from PDF 1
|
102 |
with gr.Column():
|
103 |
gr.Markdown("### PDF 1 Analysis")
|
104 |
+
def process_paragraph_1_sum(paragraph):
|
105 |
try:
|
106 |
paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
|
107 |
selected_paragraph = stored_paragraphs_1[paragraph_index]
|
108 |
summary = summarize_text(selected_paragraph)
|
109 |
+
return summary
|
110 |
+
except (IndexError, ValueError):
|
111 |
+
return "Error"
|
112 |
+
def process_paragraph_1_sent(paragraph):
|
113 |
+
try:
|
114 |
+
paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
|
115 |
+
selected_paragraph = stored_paragraphs_1[paragraph_index]
|
116 |
sentiment = text_to_sentiment(selected_paragraph)
|
117 |
+
|
118 |
+
return sentiment
|
119 |
+
except (IndexError, ValueError):
|
120 |
+
return "Error"
|
121 |
+
def process_paragraph_1_sent_tone(paragraph):
|
122 |
+
try:
|
123 |
+
paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
|
124 |
+
selected_paragraph = stored_paragraphs_1[paragraph_index]
|
125 |
fin_spans = fin_ext(selected_paragraph)
|
126 |
+
return fin_spans
|
127 |
except (IndexError, ValueError):
|
128 |
+
return []
|
129 |
+
def process_paragraph_1_sent_tone_bis(paragraph):
|
130 |
+
try:
|
131 |
+
paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
|
132 |
+
selected_paragraph = stored_paragraphs_1[paragraph_index]
|
133 |
+
fin_spans = fin_ext_bis(selected_paragraph)
|
134 |
+
return fin_spans
|
135 |
+
except (IndexError, ValueError):
|
136 |
+
return []
|
137 |
selected_paragraph_1 = gr.Textbox(label="Selected Paragraph 1 Content", lines=4)
|
138 |
selected_paragraph_1.change(show, paragraph_1_dropdown, selected_paragraph_1)
|
139 |
summarize_btn1 = gr.Button("Summarize Text from PDF 1")
|
140 |
summary_textbox_1 = gr.Textbox(label="Summary for PDF 1", lines=2)
|
141 |
+
summarize_btn1.click(fn=lambda p: process_paragraph_1_sum(p), inputs=paragraph_1_dropdown, outputs=summary_textbox_1)
|
142 |
sentiment_btn1 = gr.Button("Classify Financial Tone from PDF 1")
|
143 |
sentiment_textbox_1 = gr.Textbox(label="Classification for PDF 1", lines=1)
|
144 |
+
sentiment_btn1.click(fn=lambda p: process_paragraph_1_sent(p), inputs=paragraph_1_dropdown, outputs=sentiment_textbox_1)
|
145 |
+
analyze_btn1 = gr.Button("Analyze Financial Tone on each sentence with yiyanghkust/finbert-tone")
|
146 |
fin_spans_1 = gr.HighlightedText(label="Financial Tone Analysis for PDF 1")
|
147 |
+
analyze_btn1.click(fn=lambda p: process_paragraph_1_sent_tone(p), inputs=paragraph_1_dropdown, outputs=fin_spans_1)
|
148 |
+
analyze_btn1_ = gr.Button("Analyze Financial Tone on each sentence with ProsusAI/finbert")
|
149 |
+
fin_spans_1_ = gr.HighlightedText(label="Financial Tone Analysis for PDF 1 bis")
|
150 |
+
analyze_btn1_.click(fn=lambda p: process_paragraph_1_sent_tone_bis(p)[3], inputs=paragraph_1_dropdown, outputs=fin_spans_1_)
|
151 |
|
152 |
# Process the selected paragraph from PDF 2
|
153 |
with gr.Column():
|
154 |
gr.Markdown("### PDF 2 Analysis")
|
155 |
+
def process_paragraph_2_sum(paragraph):
|
156 |
try:
|
157 |
paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
|
158 |
+
selected_paragraph = stored_paragraphs_1[paragraph_index]
|
159 |
summary = summarize_text(selected_paragraph)
|
160 |
+
return summary
|
161 |
+
except (IndexError, ValueError):
|
162 |
+
return "Error"
|
163 |
+
def process_paragraph_2_sent(paragraph):
|
164 |
+
try:
|
165 |
+
paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
|
166 |
+
selected_paragraph = stored_paragraphs_1[paragraph_index]
|
167 |
sentiment = text_to_sentiment(selected_paragraph)
|
168 |
+
|
169 |
+
return sentiment
|
170 |
+
except (IndexError, ValueError):
|
171 |
+
return "Error"
|
172 |
+
def process_paragraph_2_sent_tone(paragraph):
|
173 |
+
try:
|
174 |
+
paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
|
175 |
+
selected_paragraph = stored_paragraphs_1[paragraph_index]
|
176 |
fin_spans = fin_ext(selected_paragraph)
|
177 |
+
return fin_spans
|
178 |
+
except (IndexError, ValueError):
|
179 |
+
return []
|
180 |
+
def process_paragraph_2_sent_tone_bis(paragraph):
|
181 |
+
try:
|
182 |
+
paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
|
183 |
+
selected_paragraph = stored_paragraphs_2[paragraph_index]
|
184 |
+
fin_spans = fin_ext_bis(selected_paragraph)
|
185 |
+
return fin_spans
|
186 |
except (IndexError, ValueError):
|
187 |
+
return []
|
188 |
selected_paragraph_2 = gr.Textbox(label="Selected Paragraph 2 Content", lines=4)
|
189 |
selected_paragraph_2.change(show, paragraph_2_dropdown, selected_paragraph_2)
|
190 |
summarize_btn2 = gr.Button("Summarize Text from PDF 2")
|
191 |
summary_textbox_2 = gr.Textbox(label="Summary for PDF 2", lines=2)
|
192 |
+
summarize_btn2.click(fn=lambda p: process_paragraph_2_sum(p), inputs=paragraph_2_dropdown, outputs=summary_textbox_2)
|
193 |
sentiment_btn2 = gr.Button("Classify Financial Tone from PDF 2")
|
194 |
sentiment_textbox_2 = gr.Textbox(label="Classification for PDF 2", lines=1)
|
195 |
+
sentiment_btn2.click(fn=lambda p: process_paragraph_2_sent(p), inputs=paragraph_2_dropdown, outputs=sentiment_textbox_2)
|
196 |
+
analyze_btn2 = gr.Button("Analyze Financial Tone on each sentence with yiyanghkust/finbert-tone")
|
197 |
fin_spans_2 = gr.HighlightedText(label="Financial Tone Analysis for PDF 2")
|
198 |
+
analyze_btn2.click(fn=lambda p: process_paragraph_2_sent_tone(p), inputs=paragraph_2_dropdown, outputs=fin_spans_2)
|
199 |
+
analyze_btn2_ = gr.Button("Analyze Financial Tone on each sentence with ProsusAI/finbert")
|
200 |
+
fin_spans_2_ = gr.HighlightedText(label="Financial Tone Analysis for PDF 2 bis")
|
201 |
+
analyze_btn2_.click(fn=lambda p: process_paragraph_2_sent_tone_bis(p)[3], inputs=paragraph_2_dropdown, outputs=fin_spans_2_)
|
202 |
|
203 |
demo.launch()
|