Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import pipeline
|
4 |
+
import spacy
|
5 |
+
import lib.read_pdf
|
6 |
+
# Initialize spaCy model
|
7 |
+
nlp = spacy.load('en_core_web_sm')
|
8 |
+
nlp.add_pipe('sentencizer')
|
9 |
+
|
10 |
+
def split_in_sentences(text):
|
11 |
+
doc = nlp(text)
|
12 |
+
return [str(sent).strip() for sent in doc.sents]
|
13 |
+
|
14 |
+
def make_spans(text, results):
|
15 |
+
results_list = [res['label'] for res in results]
|
16 |
+
facts_spans = list(zip(split_in_sentences(text), results_list))
|
17 |
+
return facts_spans
|
18 |
+
|
19 |
+
# Initialize pipelines
|
20 |
+
summarizer = pipeline("summarization", model="human-centered-summarization/financial-summarization-pegasus")
|
21 |
+
fin_model = pipeline("sentiment-analysis", model='yiyanghkust/finbert-tone', tokenizer='yiyanghkust/finbert-tone')
|
22 |
+
|
23 |
+
def summarize_text(text):
|
24 |
+
resp = summarizer(text)
|
25 |
+
return resp[0]['summary_text']
|
26 |
+
|
27 |
+
def text_to_sentiment(text):
|
28 |
+
sentiment = fin_model(text)[0]["label"]
|
29 |
+
return sentiment
|
30 |
+
|
31 |
+
def fin_ext(text):
|
32 |
+
results = fin_model(split_in_sentences(text))
|
33 |
+
return make_spans(text, results)
|
34 |
+
|
35 |
+
def extract_and_summarize(pdf1, pdf2):
|
36 |
+
if not pdf1 or not pdf2:
|
37 |
+
return [], []
|
38 |
+
|
39 |
+
pdf1_path = os.path.join(PDF_FOLDER, pdf1)
|
40 |
+
pdf2_path = os.path.join(PDF_FOLDER, pdf2)
|
41 |
+
|
42 |
+
# Extract and format paragraphs
|
43 |
+
paragraphs_1 = lib.read_pdf.extract_and_format_paragraphs(pdf1_path)
|
44 |
+
paragraphs_2 = lib.read_pdf.extract_and_format_paragraphs(pdf2_path)
|
45 |
+
|
46 |
+
start_keyword = "Main risks to"
|
47 |
+
end_keywords = ["4. Appendix", "Annex:", "4. Annex", "Detailed tables", "ACKNOWLEDGEMENTS", "STATISTICAL ANNEX", "PROSPECTS BY MEMBER STATES"]
|
48 |
+
|
49 |
+
start_index1, end_index1 = lib.read_pdf.find_text_range(paragraphs_1, start_keyword, end_keywords)
|
50 |
+
start_index2, end_index2 = lib.read_pdf.find_text_range(paragraphs_2, start_keyword, end_keywords)
|
51 |
+
|
52 |
+
paragraphs_1 = lib.read_pdf.extract_relevant_text(paragraphs_1, start_index1, end_index1)
|
53 |
+
paragraphs_2 = lib.read_pdf.extract_relevant_text(paragraphs_2, start_index2, end_index2)
|
54 |
+
|
55 |
+
paragraphs_1 = lib.read_pdf.split_text_into_paragraphs(paragraphs_1, 0)
|
56 |
+
paragraphs_2 = lib.read_pdf.split_text_into_paragraphs(paragraphs_2, 0)
|
57 |
+
|
58 |
+
return paragraphs_1, paragraphs_2
|
59 |
+
|
60 |
+
# Gradio interface setup
|
61 |
+
PDF_FOLDER = "data"
|
62 |
+
|
63 |
+
def get_pdf_files(folder):
|
64 |
+
return [f for f in os.listdir(folder) if f.endswith('.pdf')]
|
65 |
+
|
66 |
+
stored_paragraphs_1 = []
|
67 |
+
stored_paragraphs_2 = []
|
68 |
+
|
69 |
+
with gr.Blocks() as demo:
|
70 |
+
gr.Markdown("## Financial Report Paragraph Selection and Analysis")
|
71 |
+
|
72 |
+
with gr.Row():
|
73 |
+
# Upload PDFs
|
74 |
+
with gr.Column():
|
75 |
+
pdf1 = gr.Dropdown(choices=get_pdf_files(PDF_FOLDER), label="Select PDF 1")
|
76 |
+
pdf2 = gr.Dropdown(choices=get_pdf_files(PDF_FOLDER), label="Select PDF 2")
|
77 |
+
|
78 |
+
with gr.Column():
|
79 |
+
b1 = gr.Button("Extract and Display Paragraphs")
|
80 |
+
paragraph_1_dropdown = gr.Dropdown(label="Select Paragraph from PDF 1")
|
81 |
+
paragraph_2_dropdown = gr.Dropdown(label="Select Paragraph from PDF 2")
|
82 |
+
|
83 |
+
def update_paragraphs(pdf1, pdf2):
|
84 |
+
global stored_paragraphs_1, stored_paragraphs_2
|
85 |
+
stored_paragraphs_1, stored_paragraphs_2 = extract_and_summarize(pdf1, pdf2)
|
86 |
+
updated_dropdown_1 = gr.Dropdown.update(choices=[f"Paragraph {i+1}: {p[:100]}..." for i, p in enumerate(stored_paragraphs_1)], label="Select Paragraph from PDF 1")
|
87 |
+
updated_dropdown_2 = gr.Dropdown.update(choices=[f"Paragraph {i+1}: {p[:100]}..." for i, p in enumerate(stored_paragraphs_2)], label="Select Paragraph from PDF 2")
|
88 |
+
return updated_dropdown_1, updated_dropdown_2
|
89 |
+
|
90 |
+
b1.click(fn=update_paragraphs, inputs=[pdf1, pdf2], outputs=[paragraph_1_dropdown, paragraph_2_dropdown])
|
91 |
+
|
92 |
+
with gr.Row():
|
93 |
+
# Process the selected paragraph from PDF 1
|
94 |
+
with gr.Column():
|
95 |
+
selected_paragraph_1 = gr.Textbox(label="Selected Paragraph 1 Content")
|
96 |
+
summarize_btn1 = gr.Button("Summarize Text from PDF 1")
|
97 |
+
sentiment_btn1 = gr.Button("Classify Financial Tone from PDF 1")
|
98 |
+
fin_spans_1 = gr.HighlightedText(label="Financial Tone Analysis for PDF 1")
|
99 |
+
|
100 |
+
def process_paragraph_1(paragraph):
|
101 |
+
try:
|
102 |
+
paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
|
103 |
+
selected_paragraph = stored_paragraphs_1[paragraph_index]
|
104 |
+
summary = summarize_text(selected_paragraph)
|
105 |
+
sentiment = text_to_sentiment(selected_paragraph)
|
106 |
+
fin_spans = fin_ext(selected_paragraph)
|
107 |
+
return selected_paragraph, summary, sentiment, fin_spans
|
108 |
+
except (IndexError, ValueError):
|
109 |
+
return "Invalid selection", "Error", "Error", []
|
110 |
+
|
111 |
+
summarize_btn1.click(fn=lambda p: process_paragraph_1(p)[1], inputs=paragraph_1_dropdown, outputs=selected_paragraph_1)
|
112 |
+
sentiment_btn1.click(fn=lambda p: process_paragraph_1(p)[2], inputs=paragraph_1_dropdown, outputs=selected_paragraph_1)
|
113 |
+
b5 = gr.Button("Analyze Financial Tone and FLS")
|
114 |
+
b5.click(fn=lambda p: process_paragraph_1(p)[3], inputs=paragraph_1_dropdown, outputs=fin_spans_1)
|
115 |
+
|
116 |
+
with gr.Row():
|
117 |
+
# Process the selected paragraph from PDF 2
|
118 |
+
with gr.Column():
|
119 |
+
selected_paragraph_2 = gr.Textbox(label="Selected Paragraph 2 Content")
|
120 |
+
summarize_btn2 = gr.Button("Summarize Text from PDF 2")
|
121 |
+
sentiment_btn2 = gr.Button("Classify Financial Tone from PDF 2")
|
122 |
+
fin_spans_2 = gr.HighlightedText(label="Financial Tone Analysis for PDF 2")
|
123 |
+
|
124 |
+
def process_paragraph_2(paragraph):
|
125 |
+
try:
|
126 |
+
paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
|
127 |
+
selected_paragraph = stored_paragraphs_2[paragraph_index]
|
128 |
+
summary = summarize_text(selected_paragraph)
|
129 |
+
sentiment = text_to_sentiment(selected_paragraph)
|
130 |
+
fin_spans = fin_ext(selected_paragraph)
|
131 |
+
return selected_paragraph, summary, sentiment, fin_spans
|
132 |
+
except (IndexError, ValueError):
|
133 |
+
return "Invalid selection", "Error", "Error", []
|
134 |
+
|
135 |
+
summarize_btn2.click(fn=lambda p: process_paragraph_2(p)[1], inputs=paragraph_2_dropdown, outputs=selected_paragraph_2)
|
136 |
+
sentiment_btn2.click(fn=lambda p: process_paragraph_2(p)[2], inputs=paragraph_2_dropdown, outputs=selected_paragraph_2)
|
137 |
+
b6 = gr.Button("Analyze Financial Tone and FLS")
|
138 |
+
b6.click(fn=lambda p: process_paragraph_2(p)[3], inputs=paragraph_2_dropdown, outputs=fin_spans_2)
|
139 |
+
|
140 |
+
demo.launch()
|