FinanceReport / app.py
Cachoups's picture
Update app.py
5000b73 verified
import os
import gradio as gr
from gradio_calendar import Calendar
from transformers import pipeline
import spacy
import lib.read_pdf
import lib.comparison
import pandas as pd
import re
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import io
import shutil
# Initialize spaCy model
nlp = spacy.load('en_core_web_sm')
nlp.add_pipe('sentencizer')
# Gradio interface setup
PDF_FOLDER = "data"
def split_in_sentences(text):
doc = nlp(text)
return [str(sent).strip() for sent in doc.sents]
def make_spans(text, results):
results_list = [res['label'] for res in results]
facts_spans = list(zip(split_in_sentences(text), results_list))
return facts_spans
# Initialize pipelines
summarizer = pipeline("summarization", model="human-centered-summarization/financial-summarization-pegasus")
fin_model = pipeline("sentiment-analysis", model='yiyanghkust/finbert-tone', tokenizer='yiyanghkust/finbert-tone')
fin_model_bis = pipeline("sentiment-analysis", model='ProsusAI/finbert', tokenizer='ProsusAI/finbert')
table_to_text = pipeline('text2text-generation', model='google/flan-t5-xl')
def summarize_text(text):
resp = summarizer(text)
return resp[0]['summary_text']
def text_to_sentiment(text, all_score=False, label = True):
if label:
return fin_model(text, return_all_scores=all_score)[0]["label"]
else:
return fin_model(text, return_all_scores=all_score)
def fin_ext(text):
results = fin_model(split_in_sentences(text))
return make_spans(text, results)
def fin_ext_bis(text):
results = fin_model_bis(split_in_sentences(text))
return make_spans(text, results)
def upload_file_and_update_dropdown(files):
for file in files:
if file is not None:
# Save the file to the upload directory
file_path = os.path.join(PDF_FOLDER, os.path.basename(file))
shutil.copyfile(file.name, file_path)
# Get the updated list of files
files_list = os.listdir(PDF_FOLDER)
return gr.update(choices=files_list), gr.update(choices=files_list)
def extract_and_paragraph(pdf1, pdf2, paragraph):
if not pdf1 or not pdf2:
return [], []
pdf1_path = os.path.join(PDF_FOLDER, pdf1)
pdf2_path = os.path.join(PDF_FOLDER, pdf2)
# Extract and format paragraphs
paragraphs_1 = lib.read_pdf.extract_and_format_paragraphs(pdf1_path)
paragraphs_2 = lib.read_pdf.extract_and_format_paragraphs(pdf2_path)
start_keyword = ["Main risks to", "Developments in Financial Markets"]
end_keywords = ["4. Appendix", "Annex:", "4. Annex", "Detailed tables", "ACKNOWLEDGEMENTS", "STATISTICAL ANNEX", "PROSPECTS BY MEMBER STATES", "At the conclusion of the discussion"]
start_index1, end_index1 = lib.read_pdf.find_text_range(paragraphs_1, start_keyword, end_keywords)
start_index2, end_index2 = lib.read_pdf.find_text_range(paragraphs_2, start_keyword, end_keywords)
paragraphs_1 = lib.read_pdf.extract_relevant_text(paragraphs_1, start_index1, end_index1)
paragraphs_2 = lib.read_pdf.extract_relevant_text(paragraphs_2, start_index2, end_index2)
if paragraph:
paragraphs_1 = lib.read_pdf.split_text_into_paragraphs(paragraphs_1, 200)
paragraphs_2 = lib.read_pdf.split_text_into_paragraphs(paragraphs_2, 200)
return paragraphs_1, paragraphs_2
# Filter
def filter_paragraphs(keyword):
global stored_paragraphs_1, stored_paragraphs_2
global filter_paragraphs_1, filter_paragraphs_2
if not keyword:
paragraph1 = [f"Paragraph {i+1}: {p[:100]}..." for i, p in enumerate(stored_paragraphs_1)]
paragraph2 = [f"Paragraph {i+1}: {p[:100]}..." for i, p in enumerate(stored_paragraphs_2)]
filter_paragraphs_1 = stored_paragraphs_1
filter_paragraphs_2 = stored_paragraphs_2
return gr.update(choices=paragraph1, value=None), gr.update(choices=paragraph2, value=None) # No keyword entered, return original list
filter_paragraphs_1 = [p for p in stored_paragraphs_1 if keyword.lower() in p.lower()]
filter_paragraphs_2 = [p for p in stored_paragraphs_2 if keyword.lower() in p.lower()]
filtered1 = [f"Paragraph {i+1}: {p[:100]}..." for i, p in enumerate(filter_paragraphs_1)]
filtered2 = [f"Paragraph {i+1}: {p[:100]}..." for i, p in enumerate(filter_paragraphs_2)]
# Filter paragraphs that contain the keyword (case-insensitive)
# Update dropdown with filtered results
return gr.update(choices=filtered1, value=None), gr.update(choices=filtered2, value=None)
def clear_paragraphs():
global stored_paragraphs_1, stored_paragraphs_2
paragraph1 = [f"Paragraph {i+1}: {p[:100]}..." for i, p in enumerate(stored_paragraphs_1)]
paragraph2 = [f"Paragraph {i+1}: {p[:100]}..." for i, p in enumerate(stored_paragraphs_2)]
return gr.update(choices=paragraph1, value=None), gr.update(choices=paragraph2, value=None)
def filtered_close_paragraph(p, keyword, pdf):
if not keyword:
if pdf == "1":
return lib.comparison.compare_selected_paragraph(p, stored_paragraphs_1)
else:
return lib.comparison.compare_selected_paragraph(p, stored_paragraphs_2)
if pdf == "1":
return lib.comparison.compare_selected_paragraph(p, filter_paragraphs_1)
else:
return lib.comparison.compare_selected_paragraph(p, filter_paragraphs_2)
def process_paragraph_1_sum(paragraph):
try:
paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
selected_paragraph = filter_paragraphs_1[paragraph_index]
summary = summarize_text(selected_paragraph)
return summary
except (IndexError, ValueError):
return "Error"
def process_paragraph_1_sent(paragraph):
try:
paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
selected_paragraph = filter_paragraphs_1[paragraph_index]
results = text_to_sentiment(selected_paragraph, True, False)
if isinstance(results, list) and isinstance(results[0], list):
# We unpack the list of dictionaries to get all labels
output = {result['label']: result['score'] for result in results[0]}
print(output)
else:
output = {"Error": "Unexpected output format"}
return output
except (IndexError, ValueError):
return {"Error": "Unexpected output format"}
def process_paragraph_1_sent_tone(paragraph):
try:
paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
selected_paragraph = filter_paragraphs_1[paragraph_index]
fin_spans = fin_ext(selected_paragraph)
return fin_spans
except (IndexError, ValueError):
return []
def process_paragraph_1_sent_tone_bis(paragraph):
try:
paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
selected_paragraph = filter_paragraphs_1[paragraph_index]
fin_spans = fin_ext_bis(selected_paragraph)
return fin_spans
except (IndexError, ValueError):
return []
def process_paragraph_2_sum(paragraph):
try:
paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
selected_paragraph = filter_paragraphs_2[paragraph_index]
summary = summarize_text(selected_paragraph)
return summary
except (IndexError, ValueError):
return "Error"
def process_paragraph_2_sent(paragraph):
try:
paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
selected_paragraph = filter_paragraphs_2[paragraph_index]
results = text_to_sentiment(selected_paragraph, True, False)
if isinstance(results, list) and isinstance(results[0], list):
# We unpack the list of dictionaries to get all labels
output = {result['label']: result['score'] for result in results[0]}
else:
output = {"Error": "Unexpected output format"}
return output
except (IndexError, ValueError):
return {"Error": "Unexpected output format"}
def process_paragraph_2_sent_tone(paragraph):
try:
paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
selected_paragraph = filter_paragraphs_2[paragraph_index]
fin_spans = fin_ext(selected_paragraph)
return fin_spans
except (IndexError, ValueError):
return []
def process_paragraph_2_sent_tone_bis(paragraph):
try:
paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
selected_paragraph = filter_paragraphs_2[paragraph_index]
fin_spans = fin_ext_bis(selected_paragraph)
return fin_spans
except (IndexError, ValueError):
return []
def get_pdf_files(folder):
return [f for f in os.listdir(folder) if f.endswith('.pdf')]
def show1(paragraph):
try:
paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
selected_paragraph = filter_paragraphs_1[paragraph_index]
return selected_paragraph
except (IndexError, ValueError):
return "Error"
def show2(paragraph):
try:
paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
selected_paragraph = filter_paragraphs_2[paragraph_index]
return selected_paragraph
except (IndexError, ValueError):
return "Error"
def get_excel_files(folder):
return [f for f in os.listdir(folder) if f.endswith('.xlsx')]
def get_sheet_names(file):
xls = pd.ExcelFile(os.path.join(PDF_FOLDER, file))
return gr.update(choices=xls.sheet_names)
def process_and_compare(file1, sheet1, file2, sheet2):
def process_file(file_path, sheet_name):
# Extract year from file name
year = int(re.search(r'(\d{4})', file_path).group(1))
# Load the Excel file
df = pd.read_excel(os.path.join(PDF_FOLDER, file_path), sheet_name=sheet_name, index_col=0)
# Define expected columns based on extracted year
historical_col = f'Historical {year - 1}'
baseline_cols = [f'Baseline {year}', f'Baseline {year + 1}', f'Baseline {year + 2}']
adverse_cols = [f'Adverse {year}', f'Adverse {year + 1}', f'Adverse {year + 2}']
level_deviation_col = f'Level Deviation {year + 2}'
# Drop rows and reset index
df = df.iloc[4:].reset_index(drop=True)
# Define the new column names
new_columns = ['Country', 'Code', historical_col] + baseline_cols + adverse_cols + ['Adverse Cumulative', 'Adverse Minimum', level_deviation_col]
# Ensure the number of columns matches
if len(df.columns) == len(new_columns):
df.columns = new_columns
else:
raise ValueError(f"Expected {len(new_columns)} columns, but found {len(df.columns)} columns in the data.")
columns = ['Country', f'Adverse {year}', f'Adverse {year+1}', f'Adverse {year+2}', 'Adverse Cumulative']
return df, df[columns]
# Process both files
global stored_df1, stored_df2
df1, stored_df1 = process_file(file1, sheet1)
df2, stored_df2 = process_file(file2, sheet2)
year1 = int(re.search(r'(\d{4})', file1).group(1))
year2 = int(re.search(r'(\d{4})', file2).group(1))
# Merge dataframes on 'Country'
merged_df = pd.merge(df2, df1, on='Country', suffixes=(f'_{year1}', f'_{year2}'))
merged_df['Difference adverse cumulative growth'] = merged_df[f'Adverse Cumulative_{year2}'] - merged_df[f'Adverse Cumulative_{year1}']
# Ensure data types are correct
merged_df['Country'] = merged_df['Country'].astype(str)
merged_df['Difference adverse cumulative growth'] = pd.to_numeric(merged_df['Difference adverse cumulative growth'], errors='coerce')
# Create histogram plot with color coding
fig, ax = plt.subplots(figsize=(12, 8))
colors = plt.get_cmap('tab20').colors # Use a colormap with multiple colors
num_countries = len(merged_df['Country'])
bars = ax.bar(merged_df['Country'], merged_df['Difference adverse cumulative growth'], color=colors[:num_countries])
# Add a legend
handles = [patches.Patch(color=color, label=country) for color, country in zip(colors[:num_countries], merged_df['Country'])]
ax.legend(handles=handles, title='Countries', bbox_to_anchor=(1.05, 1), loc='upper left')
ax.set_title(f'Histogram of Difference between Adverse cumulative growth of {year2} and {year1} for {sheet1}')
ax.set_xlabel('Country')
ax.set_ylabel('Difference')
plt.xticks(rotation=90)
# Save plot to a file
file_path = 'output/plot.png'
plt.savefig(file_path, format='png', bbox_inches='tight')
plt.close()
filtered_countries1 = [country for country in stored_df1.Country.values.tolist() if (len(str(country)) < 20 and str(country) != "nan")]
filtered_countries2 = [country for country in stored_df2.Country.values.tolist() if (len(str(country)) < 20 and str(country) != "nan")]
return file_path, gr.update(choices=filtered_countries1), gr.update(choices=filtered_countries2)
def find_sentences_with_keywords(text, keywords):
# Split text into sentences using regular expression to match sentence-ending punctuation
sentences = re.split(r'(?<=[.!?])\s+', text)
matched_sentences = set() # Use a set to store unique sentences
# For each keyword, find sentences that contain the keyword as a whole word
for keyword in keywords:
keyword_pattern = re.compile(rf'\b{re.escape(keyword)}\b', re.IGNORECASE) # Using word boundaries
for sentence in sentences:
if keyword_pattern.search(sentence):
matched_sentences.add(sentence) # Add to set to ensure uniqueness
return list(matched_sentences) # Convert set back to list for consistent output
# Main function to process both PDFs based on the Excel file names and the sheet name
def process_pdfs_and_analyze_sentiment(file1, file2, sheet):
# Extract text from both PDFs based on the file name
pdf_file1 = file1.replace(".xlsx", ".pdf")
pdf_file2 = file2.replace(".xlsx", ".pdf")
text1, text2 =extract_and_paragraph(pdf_file1, pdf_file2, False)
# Use sheet name as the keyword to find relevant sentences
keywords = {
'GDP': ['GDP'],
'HICP': ['HICP'],
'RRE prices': ['RRE', 'residential'],
'CRE prices': ['CRE', 'commercial'],
'Unemployment': ['unemployment']
}
selected_keywords = keywords.get(sheet, [])
# Find sentences containing the keywords
sentences1 = find_sentences_with_keywords(text1, selected_keywords)
sentences2 = find_sentences_with_keywords(text2, selected_keywords)
# Concatenate all sentences for each PDF
text_pdf1 = "\n".join(sentences1)
text_pdf2 = "\n".join(sentences2)
# Perform sentiment analysis on the extracted sentences for each PDF
result_pdf1 = fin_ext(text_pdf1)
result_pdf2 = fin_ext(text_pdf2)
return result_pdf1, result_pdf2
#def change_choices(df):
# return gr.update(choices=df.Country.values.tolist())
def generate_text(df, country, theme):
# Filter the dataframe based on the country
#for column in df.columns:
# if column != 'Country':
# df[column] = df[column].apply(lambda x: f"{x:.6f}%")
#row = df[df['Country'] == country].iloc[0]
def format_row_for_prompt(row):
# Create a formatted string with colons and percentages
formatted_row = []
for col, value in row.items():
if col != 'Country': # Exclude 'Country' or format differently if needed
if isinstance(value, (int, float)): # Add percentage sign for numeric values
value_str = f"{value:.6f}%"
else:
value_str = str(value)
formatted_row.append(f"{col}: {value_str}")
else:
formatted_row.append(f"{col}: {value}")
return "\n".join(formatted_row)
# Convert the row to a string format for prompt
year = int(re.search(r'(\d{4})', df.columns[1]).group(1))
df.columns = ['Country', f'{year}', f'{year+1}', f'{year+2}', 'Total']
row = df[df['Country'] == country].iloc[0]
row_str = format_row_for_prompt(row)
#row_str = row.to_string(index=True)
print(row_str)
simple_prompt = f"""
Here is the data for {theme} in {country}:
{row_str}
Summarize the adverse growth for {theme} in {country}. Highlight any increase or decrease compared to previous years and include the cumulative result.
"""
prompt = f"""
Here is an example of how to describe adverse growth data for a given country:
Country: Australia
Adverse 1990: -0.43%
Adverse 1991: -1.99%
Adverse 1192: -1.20%
Adverse Cumulative: -3.57%
Topic: GDP
Description:
In the adverse scenario, the GDP growth in Australia was -0.43% in 1990. It decreased further to -1.99% in 1991, showing worsening conditions. There was a slight improvement to -1.20% in 1992. The total cumulative adverse growth is -3.57%.
Now, using the following data for {theme} in {country}, describe the adverse growth:
{row_str}
Topic: {theme}
Describe, using the similar pattern from the example, the changes for the provided country and years. Highlight how the values change year by year and whether they increased or decreased. Do not mention any other countries or years, and describe exactly what is in the table. Keep the description simple and direct.
"""
prompt = f"""
Example:
Country: Australia
1990: -0.43%
1991: -1.99%
1992: -1.20%
Total: -3.57%
Anwser:
In the adverse scenario, the growth in Australia was -0.43% in 1990. It worsened to -1.99% in 1991 and slightly improved to -1.20% in 1992. The total cumulative adverse growth was -3.57% from 1990 to 1992.
Now, using the following data in {country}, describe and provibe how the adverse growth changed each year, whether it increased or decreased, worsened or improved:
{row_str}
Answer:
"""
prompt1 = f"""
Given the following adverse growth data for {theme} in {country}:
{row_str}
Topic: {theme}
Describe the yearly changes in adverse growth, highlighting whether the values increased or decreased, and provide the cumulative growth. Follow this example:
Example:
Country: Australia
1990: -0.43%
1991: -1.99%
1992: -1.20%
Cumulative: -3.57%
Topic: GDP
Description:
In Australia, GDP growth was -0.43% in 1990. It worsened to -1.99% in 1991 and improved to -1.20% in 1992. The total cumulative adverse growth was -3.57%.
Now, describe the data for {country}
"""
print(year)
# Generate the descriptive text using the model
#result = table_to_text(prompt, max_length=240, temperature = 0.7, top_p = 0.3, do_sample = False)[0]['generated_text']
result = table_to_text(prompt, max_length=240)[0]['generated_text']
return result
# Global variable
stored_paragraphs_1 = []
stored_paragraphs_2 = []
filter_paragraphs_1 = []
filter_paragraphs_2 = []
stored_df1 = []
stored_df2 = []
current_theme = {"dark": False}
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'dark') {
url.searchParams.set('__theme', 'dark');
window.location.href = url.href;
}
}
"""
# Define custom colors for the labels
color_map = {
"Positive": "green", # Green for positive
"Neutral": "blue", # Blue for neutral
"Negative": "red" # Red for negative
}
color_map1 = {
"positive": "green", # Green for positive
"neutral": "blue", # Blue for neutral
"negative": "red" # Red for negative
}
with gr.Blocks(theme='gradio/soft',js=js_func) as demo:
with gr.Tab("Methodology"):
gr.Markdown("""
## Macro-economy Adverse Scenario Comparison from EBA Reports
This application allows the user to compare two reports from text contents or from tables. It's divided into two tabs.
**First Tab: Text Comparisons**
- It handdles EBA and Federal Open Market Committee files report. Don't modify federal file name.
- Select two PDFs. Each PDF's text content will be extracted into paragraphs.
- You can choose a keyword to filter paragraphs.
- Select a paragraph from one PDF, and find the most similar paragraph from the other PDF using a specific method.
- For a selected paragraph, compute summarization using the **FinPEGASUS model**.
- For a selected paragraph, compute sentiment analysis of the paragraph, and for each sentence, classify into three classes (Positive, Negative, Neutral) using two different fine-tuned **FinBERT models**:
- [ProsusAI/finbert](https://huggingface.co/ProsusAI/finbert)
- [yiyanghkust/finbert-tone](https://huggingface.co/yiyanghkust/finbert-tone)
**Second Tab: Table Comparisons**
- Select two Excel files and a sheet name.
- For the two selected tables, compute the difference of the cumulative adverse growth rate over their respective three years for the selected sheet name (topic).
- For the selected topic (sheet name), find related sentences in the associated PDF text that mention the topic, and classify them by sentiment.
- For a selected country and topic, describe the adverse growth rate trend over three years using the [**google/flan-t5-xl**](https://huggingface.co/google/flan-t5-xl).
""")
with gr.Tab("Financial Report Text Analysis"):
gr.Markdown("## Financial Report Paragraph Selection and Analysis on Adverse Macro-Economy Scenario")
with gr.Row():
# Upload PDFs
with gr.Column():
gr.Markdown("### Step 1: Upload PDF Files")
upload_button = gr.File(label="Upload files", file_types=[".pdf"], file_count="multiple")
pdf1 = gr.Dropdown(choices=get_pdf_files(PDF_FOLDER), label="Select PDF 1")
pdf2 = gr.Dropdown(choices=get_pdf_files(PDF_FOLDER), label="Select PDF 2")
upload_button.upload(upload_file_and_update_dropdown, upload_button, [pdf1, pdf2])
with gr.Column():
gr.Markdown("### Step 2: Extract and Display Paragraphs")
b1 = gr.Button("Extract and Display Paragraphs")
paragraph_1_dropdown = gr.Dropdown(label="Select Paragraph from PDF 1")
paragraph_2_dropdown = gr.Dropdown(label="Select Paragraph from PDF 2")
keyword_input = gr.Textbox(label="Enter keyword to search")
# Button to trigger the filtering
with gr.Row():
search_button = gr.Button("Search")
clear_button = gr.Button("Clear")
search_button.click(filter_paragraphs, inputs=keyword_input, outputs=[paragraph_1_dropdown, paragraph_2_dropdown])
clear_button.click(clear_paragraphs, inputs=[], outputs=[paragraph_1_dropdown, paragraph_2_dropdown])
# Extract paragraphs from PDFs and update dropdowns
def update_paragraphs(pdf1, pdf2):
global stored_paragraphs_1, stored_paragraphs_2
global filter_paragraphs_1, filter_paragraphs_2
stored_paragraphs_1, stored_paragraphs_2 = extract_and_paragraph(pdf1, pdf2, True)
filter_paragraphs_1, filter_paragraphs_2 = stored_paragraphs_1, stored_paragraphs_2
updated_dropdown_1 = [f"Paragraph {i+1}: {p[:100]}..." for i, p in enumerate(stored_paragraphs_1)]
updated_dropdown_2 = [f"Paragraph {i+1}: {p[:100]}..." for i, p in enumerate(stored_paragraphs_2)]
return gr.update(choices=updated_dropdown_1), gr.update(choices=updated_dropdown_2)
b1.click(fn=update_paragraphs, inputs=[pdf1, pdf2], outputs=[paragraph_1_dropdown, paragraph_2_dropdown])
gr.Markdown("---")
with gr.Row():
# PDF 1 Analysis section with custom background
with gr.Column():
gr.Markdown("### PDF 1 Analysis")
selected_paragraph_1 = gr.Textbox(label="Selected Paragraph 1 Content", lines=4)
paragraph_1_dropdown.select(fn=show1, inputs = paragraph_1_dropdown, outputs=selected_paragraph_1)
close_paragraph_1 = gr.Textbox(label="Closest Paragraph from PDF 2 to selected Paragraph PDF 1", lines=4)
paragraph_1_dropdown.select(
fn=lambda p, keyword: filtered_close_paragraph(p, keyword, "2"), # Use stored_paragraphs_2 inside the function
inputs=[paragraph_1_dropdown, keyword_input],
outputs=close_paragraph_1
)
with gr.Group():
summarize_btn1 = gr.Button("Summarize Text from PDF 1")
summary_textbox_1 = gr.Textbox(label="Summary for PDF 1", lines=2)
# Summarize the selected paragraph from PDF 1
summarize_btn1.click(fn=lambda p: process_paragraph_1_sum(p), inputs=paragraph_1_dropdown, outputs=summary_textbox_1)
sentiment_btn1 = gr.Button("Classify Financial Tone for paragraph from PDF 1")
sentiment_textbox_1 = gr.Label(label="Classification from PDF 1")
# Classify the financial tone of the selected paragraph from PDF 1
sentiment_btn1.click(fn=lambda p: process_paragraph_1_sent(p), inputs=paragraph_1_dropdown, outputs=sentiment_textbox_1)
with gr.Accordion("Analyze Financial Tone on each sentence"):
analyze_btn1 = gr.Button("With FinBERT-tone")
fin_spans_1 = gr.HighlightedText(label="Financial Tone Analysis for PDF 1",color_map=color_map, show_legend=True)
# Analyze financial tone on each sentence using FinBERT-tone
analyze_btn1.click(fn=lambda p: process_paragraph_1_sent_tone(p), inputs=paragraph_1_dropdown, outputs=fin_spans_1)
analyze_btn1_ = gr.Button("With ProsusAI/finbert")
fin_spans_1_ = gr.HighlightedText(label="Financial Tone Analysis for PDF 1 (Bis)",color_map=color_map1, show_legend=True)
# Analyze financial tone using ProsusAI/finbert
analyze_btn1_.click(fn=lambda p: process_paragraph_1_sent_tone_bis(p), inputs=paragraph_1_dropdown, outputs=fin_spans_1_)
# Process the selected paragraph from PDF 2
with gr.Column():
gr.Markdown("### PDF 2 Analysis")
selected_paragraph_2 = gr.Textbox(label="Selected Paragraph 2 Content", lines=4)
paragraph_2_dropdown.select(fn=show2, inputs = paragraph_2_dropdown, outputs=selected_paragraph_2)
close_paragraph_2 = gr.Textbox(label="Closest Paragraph from PDF 1 to selected Paragraph PDF 2", lines=4)
paragraph_2_dropdown.select(
fn=lambda p, keyword: filtered_close_paragraph(p, keyword, "1"), # Use stored_paragraphs_2 inside the function
inputs=[paragraph_2_dropdown, keyword_input],
outputs=close_paragraph_2
)
with gr.Group():
# Display selected paragraph from PDF 2
selected_paragraph_2.change(fn=show2, inputs=paragraph_2_dropdown, outputs=selected_paragraph_2)
summarize_btn2 = gr.Button("Summarize Text from PDF 2")
summary_textbox_2 = gr.Textbox(label="Summary for PDF 2", lines=2)
# Summarize the selected paragraph from PDF 2
summarize_btn2.click(fn=lambda p: process_paragraph_2_sum(p), inputs=paragraph_2_dropdown, outputs=summary_textbox_2)
sentiment_btn2 = gr.Button("Classify Financial Tone for paragraph from PDF 2")
sentiment_textbox_2 = gr.Label(label="Classification from PDF 2")
# Classify the financial tone of the selected paragraph from PDF 2
sentiment_btn2.click(fn=lambda p: process_paragraph_2_sent(p), inputs=paragraph_2_dropdown, outputs=sentiment_textbox_2)
with gr.Accordion("Analyze Financial Tone on each sentence"):
analyze_btn2 = gr.Button("With FinBERT-tone")
fin_spans_2 = gr.HighlightedText(label="Financial Tone Analysis for PDF 2",color_map=color_map, show_legend=True)
# Analyze financial tone on each sentence using FinBERT-tone for PDF 2
analyze_btn2.click(fn=lambda p: process_paragraph_2_sent_tone(p), inputs=paragraph_2_dropdown, outputs=fin_spans_2)
analyze_btn2_ = gr.Button("With ProsusAI/finbert")
fin_spans_2_ = gr.HighlightedText(label="Financial Tone Analysis for PDF 2 (Bis)",color_map=color_map1, show_legend=True)
# Analyze financial tone using ProsusAI/finbert for PDF 2
analyze_btn2_.click(fn=lambda p: process_paragraph_2_sent_tone_bis(p), inputs=paragraph_2_dropdown, outputs=fin_spans_2_)
with gr.Tab("Financial Report Table Analysis"):
# New tab content goes here
gr.Markdown("## Excel Data Comparison")
with gr.Row():
with gr.Column():
file1 = gr.Dropdown(choices=get_excel_files(PDF_FOLDER), label="Select Excel File 1")
file2 = gr.Dropdown(choices=get_excel_files(PDF_FOLDER), label="Select Excel File 2")
sheet = gr.Dropdown(choices=["GDP", "HICP", "RRE prices", "Unemployment", "CRE prices"], label="Select Sheet for File 1 and 2")
with gr.Column():
result = gr.Image(label="Comparison Plot")
#result = gr.BarPlot()
def update_sheets(file):
return get_sheet_names(file)
b1 = gr.Button("Compare Data")
b2 = gr.Button("Extract text information from PDFs")
with gr.Row():
with gr.Column():
sentiment_results_pdf1 = gr.HighlightedText(label="Sentiment Analysis - PDF 1",color_map=color_map, show_legend=True)
with gr.Column():
sentiment_results_pdf2 = gr.HighlightedText(label="Sentiment Analysis - PDF 2",color_map=color_map, show_legend=True)
with gr.Accordion("Adverse growth trends"):
with gr.Row():
with gr.Column():
country_1_dropdown = gr.Dropdown(label="Select Country from Excel File 1")
summarize_btn1_country = gr.Button("Summary for the selected country")
text_result_df1 = gr.Textbox(label="Sentence for excel file 1", lines=2)
summarize_btn1_country.click(fn=lambda country, theme: generate_text(stored_df1, country, theme),
inputs=[country_1_dropdown, sheet],
outputs=text_result_df1)
with gr.Column():
country_2_dropdown = gr.Dropdown(label="Select Country from Excel File 2")
summarize_btn2_country = gr.Button("Summary for the selected country")
text_result_df2 = gr.Textbox(label="Sentence for excel file 2", lines=2)
summarize_btn2_country.click(fn=lambda country, theme: generate_text(stored_df2, country, theme),
inputs=[country_2_dropdown, sheet],
outputs=text_result_df2)
# Button to extract text from PDFs and perform sentiment analysis
b1.click(fn=process_and_compare, inputs=[file1, sheet, file2, sheet], outputs=[result ,country_1_dropdown, country_2_dropdown])
b2.click(fn=process_pdfs_and_analyze_sentiment, inputs=[file1, file2, sheet], outputs=[sentiment_results_pdf1, sentiment_results_pdf2])
with gr.Tab("Fed data analysis"):
gr.Markdown("## Sentiment Analysis Overview")
# Display DataFrame
df = pd.read_csv("data/2008_2024_minutes_corrected.csv", header = 0)
df['Total_paragraphs']=df['Total_paragraphs']-df['Neutral']
df['Positive_ratio'] = df['Positive'] / df['Total_paragraphs']*100
df['Negative_ratio'] = df['Negative'] / df['Total_paragraphs']*100
df['Date'] = pd.to_datetime(df['Date'])
start_date = df['Date'].min()
end_date = df['Date'].max()
#start = Calendar(value ="2008-01-01", type="string", label="Start")
#end = Calendar(value="2025-01-01",type="string", label="End")
#apply_btn = gr.Button("Apply", scale=0)
#reset_btn = gr.Button("Reset", scale=0)
# data_table = gr.DataFrame(value=df[['Date', 'Positive_ratio', 'Negative_ratio', 'Total_paragraphs']], label="Sentiment Data", height=500)
# Pivot the DataFrame
#melted_df = df.melt(id_vars='Date', value_vars=['Positive_ratio', 'Negative_ratio'],
# var_name='Ratio_Type', value_name='Rate')
# Line plot for the ratios
line_plot = gr.LinePlot(
df,
x='Date',
y='Positive_ratio',
title="Positive Rate Over Time",
y_lim=[0, 100], # Limit y-axis to 0-1 since it's a ratio
#color = 'Ratio_Type'
)
#apply_btn.click(lambda start,end: gr.LinePlot(x_lim=[start, end]), [start, end], line_plot)
#reset_btn.click(lambda : gr.LinePlot(x_lim=[start_date, end_date]), [], line_plot)
demo.launch()