FinanceReport / app.py
Cachoups's picture
Update app.py
1bfee56 verified
raw
history blame
19.9 kB
import os
import gradio as gr
from transformers import pipeline
import spacy
import lib.read_pdf
import pandas as pd
import re
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import io
# Initialize spaCy model
nlp = spacy.load('en_core_web_sm')
nlp.add_pipe('sentencizer')
def split_in_sentences(text):
doc = nlp(text)
return [str(sent).strip() for sent in doc.sents]
def make_spans(text, results):
results_list = [res['label'] for res in results]
facts_spans = list(zip(split_in_sentences(text), results_list))
return facts_spans
# Initialize pipelines
summarizer = pipeline("summarization", model="human-centered-summarization/financial-summarization-pegasus")
fin_model = pipeline("sentiment-analysis", model='yiyanghkust/finbert-tone', tokenizer='yiyanghkust/finbert-tone')
fin_model_bis = pipeline("sentiment-analysis", model='ProsusAI/finbert', tokenizer='ProsusAI/finbert')
table_to_text = pipeline('text2text-generation', model='google/flan-t5-large')
def summarize_text(text):
resp = summarizer(text)
return resp[0]['summary_text']
def text_to_sentiment(text):
sentiment = fin_model(text)[0]["label"]
return sentiment
def fin_ext(text):
results = fin_model(split_in_sentences(text))
return make_spans(text, results)
def fin_ext_bis(text):
results = fin_model_bis(split_in_sentences(text))
return make_spans(text, results)
def extract_and_paragraph(pdf1, pdf2, paragraph):
if not pdf1 or not pdf2:
return [], []
pdf1_path = os.path.join(PDF_FOLDER, pdf1)
pdf2_path = os.path.join(PDF_FOLDER, pdf2)
# Extract and format paragraphs
paragraphs_1 = lib.read_pdf.extract_and_format_paragraphs(pdf1_path)
paragraphs_2 = lib.read_pdf.extract_and_format_paragraphs(pdf2_path)
start_keyword = "Main risks to"
end_keywords = ["4. Appendix", "Annex:", "4. Annex", "Detailed tables", "ACKNOWLEDGEMENTS", "STATISTICAL ANNEX", "PROSPECTS BY MEMBER STATES"]
start_index1, end_index1 = lib.read_pdf.find_text_range(paragraphs_1, start_keyword, end_keywords)
start_index2, end_index2 = lib.read_pdf.find_text_range(paragraphs_2, start_keyword, end_keywords)
paragraphs_1 = lib.read_pdf.extract_relevant_text(paragraphs_1, start_index1, end_index1)
paragraphs_2 = lib.read_pdf.extract_relevant_text(paragraphs_2, start_index2, end_index2)
if paragraph:
paragraphs_1 = lib.read_pdf.split_text_into_paragraphs(paragraphs_1, 0)
paragraphs_2 = lib.read_pdf.split_text_into_paragraphs(paragraphs_2, 0)
return paragraphs_1, paragraphs_2
# Gradio interface setup
PDF_FOLDER = "data"
def get_pdf_files(folder):
return [f for f in os.listdir(folder) if f.endswith('.pdf')]
def show(name):
return f"{name}"
def get_excel_files(folder):
return [f for f in os.listdir(folder) if f.endswith('.xlsx')]
def get_sheet_names(file):
xls = pd.ExcelFile(os.path.join(PDF_FOLDER, file))
return gr.update(choices=xls.sheet_names)
def process_and_compare(file1, sheet1, file2, sheet2):
def process_file(file_path, sheet_name):
# Extract year from file name
year = int(re.search(r'(\d{4})', file_path).group(1))
# Load the Excel file
df = pd.read_excel(os.path.join(PDF_FOLDER, file_path), sheet_name=sheet_name, index_col=0)
# Define expected columns based on extracted year
historical_col = f'Historical {year - 1}'
baseline_cols = [f'Baseline {year}', f'Baseline {year + 1}', f'Baseline {year + 2}']
adverse_cols = [f'Adverse {year}', f'Adverse {year + 1}', f'Adverse {year + 2}']
level_deviation_col = f'Level Deviation {year + 2}'
# Drop rows and reset index
df = df.iloc[4:].reset_index(drop=True)
# Define the new column names
new_columns = ['Country', 'Code', historical_col] + baseline_cols + adverse_cols + ['Adverse Cumulative', 'Adverse Minimum', level_deviation_col]
# Ensure the number of columns matches
if len(df.columns) == len(new_columns):
df.columns = new_columns
else:
raise ValueError(f"Expected {len(new_columns)} columns, but found {len(df.columns)} columns in the data.")
columns = ['Country', f'Adverse {year}', f'Adverse {year+1}', f'Adverse {year+2}', 'Adverse Cumulative']
return df, df[columns]
# Process both files
global stored_df1, stored_df2
df1, stored_df1 = process_file(file1, sheet1)
df2, stored_df2 = process_file(file2, sheet2)
year1 = int(re.search(r'(\d{4})', file1).group(1))
year2 = int(re.search(r'(\d{4})', file2).group(1))
# Merge dataframes on 'Country'
merged_df = pd.merge(df2, df1, on='Country', suffixes=(f'_{year1}', f'_{year2}'))
merged_df['Difference adverse cumulative growth'] = merged_df[f'Adverse Cumulative_{year2}'] - merged_df[f'Adverse Cumulative_{year1}']
# Ensure data types are correct
merged_df['Country'] = merged_df['Country'].astype(str)
merged_df['Difference adverse cumulative growth'] = pd.to_numeric(merged_df['Difference adverse cumulative growth'], errors='coerce')
# Create histogram plot with color coding
fig, ax = plt.subplots(figsize=(12, 8))
colors = plt.get_cmap('tab20').colors # Use a colormap with multiple colors
num_countries = len(merged_df['Country'])
bars = ax.bar(merged_df['Country'], merged_df['Difference adverse cumulative growth'], color=colors[:num_countries])
# Add a legend
handles = [patches.Patch(color=color, label=country) for color, country in zip(colors[:num_countries], merged_df['Country'])]
ax.legend(handles=handles, title='Countries', bbox_to_anchor=(1.05, 1), loc='upper left')
ax.set_title(f'Histogram of Difference between Adverse cumulative growth of {year2} and {year1} for {sheet1}')
ax.set_xlabel('Country')
ax.set_ylabel('Difference')
plt.xticks(rotation=90)
# Save plot to a file
file_path = 'output/plot.png'
plt.savefig(file_path, format='png', bbox_inches='tight')
plt.close()
return file_path, gr.update(choices=stored_df1.Country.values.tolist()), gr.update(choices=stored_df2.Country.values.tolist())
def find_sentences_with_keywords(text, keywords):
# Split text into sentences using regular expression to match sentence-ending punctuation
sentences = re.split(r'(?<=[.!?])\s+', text)
matched_sentences = set() # Use a set to store unique sentences
# For each keyword, find sentences that contain the keyword as a whole word
for keyword in keywords:
keyword_pattern = re.compile(rf'\b{re.escape(keyword)}\b', re.IGNORECASE) # Using word boundaries
for sentence in sentences:
if keyword_pattern.search(sentence):
matched_sentences.add(sentence) # Add to set to ensure uniqueness
return list(matched_sentences) # Convert set back to list for consistent output
# Main function to process both PDFs based on the Excel file names and the sheet name
def process_pdfs_and_analyze_sentiment(file1, file2, sheet):
# Extract text from both PDFs based on the file name
pdf_file1 = file1.replace(".xlsx", ".pdf")
pdf_file2 = file2.replace(".xlsx", ".pdf")
text1, text2 =extract_and_paragraph(pdf_file1, pdf_file2, False)
# Use sheet name as the keyword to find relevant sentences
keywords = {
'GDP': ['GDP'],
'HICP': ['HICP'],
'RRE prices': ['RRE', 'residential'],
'CRE prices': ['CRE', 'commercial'],
'Unemployment': ['unemployment']
}
selected_keywords = keywords.get(sheet, [])
# Find sentences containing the keywords
sentences1 = find_sentences_with_keywords(text1, selected_keywords)
sentences2 = find_sentences_with_keywords(text2, selected_keywords)
# Concatenate all sentences for each PDF
text_pdf1 = "\n".join(sentences1)
text_pdf2 = "\n".join(sentences2)
# Perform sentiment analysis on the extracted sentences for each PDF
result_pdf1 = fin_ext_bis(text_pdf1)
result_pdf2 = fin_ext_bis(text_pdf2)
return result_pdf1, result_pdf2
#def change_choices(df):
# return gr.update(choices=df.Country.values.tolist())
def generate_text(df, country, theme):
# Filter the dataframe based on the country
#for column in df.columns:
# if column != 'Country':
# df[column] = df[column].apply(lambda x: f"{x:.6f}%")
#row = df[df['Country'] == country].iloc[0]
def format_row_for_prompt(row):
# Create a formatted string with colons and percentages
formatted_row = []
for col, value in row.items():
if col != 'Country': # Exclude 'Country' or format differently if needed
if isinstance(value, (int, float)): # Add percentage sign for numeric values
value_str = f"{value:.6f}%"
else:
value_str = str(value)
formatted_row.append(f"{col}: {value_str}")
else:
formatted_row.append(f"{col}: {value}")
return "\n".join(formatted_row)
# Convert the row to a string format for prompt
row = df[df['Country'] == country].iloc[0]
row_str = format_row_for_prompt(row)
#row_str = row.to_string(index=True)
print(row_str)
simple_prompt = f"""
Here is the data for {theme} in {country}:
{row_str}
Summarize the adverse growth for {theme} in {country}. Highlight any increase or decrease compared to previous years and include the cumulative result.
"""
prompt = f"""
Here is an example of how to describe adverse growth data for a given country:
Country: Australia
Adverse 1990: -0.43%
Adverse 1991: -1.99%
Adverse 1192: -1.20%
Adverse Cumulative: -3.57%
Topic: GDP
Description:
In the adverse scenario, the GDP growth in Australia was -0.43% in 1990. It decreased further to -1.99% in 1991, showing worsening conditions. There was a slight improvement to -1.20% in 1992. The total cumulative adverse growth is -3.57%.
Now, using the following data for {theme} in {country}, describe the adverse growth:
{row_str}
Topic: {theme}
Describe, using the similar pattern from the example, the changes for the provided country and years. Highlight how the values change year by year and whether they increased or decreased. Do not mention any other countries or years, and describe exactly what is in the table. Keep the description simple and direct.
"""
prompt = f"""
Here is an example of how to describe adverse growth data for a given country:
Country: Australia
Adverse 1990: -0.43%
Adverse 1991: -1.99%
Adverse 1992: -1.20%
Adverse Cumulative: -3.57%
Topic: GDP
Description:
In the adverse scenario, the GDP growth in Australia was -0.43% in 1990. It worsened to -1.99% in 1991 and slightly improved to -1.20% in 1992. The total cumulative adverse growth was -3.57%.
Now, using the following data for {theme} in {country}, describe the adverse growth:
{row_str}
Topic: {theme}
Your task is to describe the changes in the provided data year by year, just like in the example. Focus only on the provided country and values, and do not introduce any new countries or years. Ensure the description follows the pattern in the example, highlighting whether the values increased or decreased each year.
"""
prompt1 = f"""
Here is an example of how to describe adverse growth data for a given country:
Country: Australia
Adverse 2020: -0.43%
Adverse 2021: -1.99%
Adverse 2022: -1.20%
Adverse Cumulative: -3.57%
Topic: GDP
Description:
In the adverse scenario, the GDP growth in Australia was -0.43% in 2020. It decreased further to -1.99% in 2021, showing worsening conditions. However, there was a slight improvement to -1.20% in 2022. The total cumulative adverse growth is -3.57%.
Now, using the following data for {theme} in {country}, perform the following:
1. Highlight how the values change from year to year.
2. Describe whether the values increased or decreased compared to the previous year.
3. Indicate if the changes represent a worsening or improvement, and if this is strong or slight.
4. Include the cumulative result.
Data:
{row_str}
Topic: {theme}
Make sure your description follows the example format and accurately reflects the data.
"""
# Generate the descriptive text using the model
result = table_to_text(prompt, max_length=240, temperature = 0.7, do_sample = True)[0]['generated_text']
return result
# Global variable
stored_paragraphs_1 = []
stored_paragraphs_2 = []
stored_df1 = []
stored_df2 = []
with gr.Blocks() as demo:
with gr.Tab("Financial Report Text Analysis"):
gr.Markdown("## Financial Report Paragraph Selection and Analysis on adverse macro-economy scenario")
with gr.Row():
# Upload PDFs
with gr.Column():
pdf1 = gr.Dropdown(choices=get_pdf_files(PDF_FOLDER), label="Select PDF 1")
pdf2 = gr.Dropdown(choices=get_pdf_files(PDF_FOLDER), label="Select PDF 2")
with gr.Column():
b1 = gr.Button("Extract and Display Paragraphs")
paragraph_1_dropdown = gr.Dropdown(label="Select Paragraph from PDF 1")
paragraph_2_dropdown = gr.Dropdown(label="Select Paragraph from PDF 2")
def update_paragraphs(pdf1, pdf2):
global stored_paragraphs_1, stored_paragraphs_2
stored_paragraphs_1, stored_paragraphs_2 = extract_and_paragraph(pdf1, pdf2, True)
updated_dropdown_1 = [f"Paragraph {i+1}: {p[:100]}..." for i, p in enumerate(stored_paragraphs_1)]
updated_dropdown_2 = [f"Paragraph {i+1}: {p[:100]}..." for i, p in enumerate(stored_paragraphs_2)]
return gr.update(choices=updated_dropdown_1), gr.update(choices=updated_dropdown_2)
b1.click(fn=update_paragraphs, inputs=[pdf1, pdf2], outputs=[paragraph_1_dropdown, paragraph_2_dropdown])
with gr.Row():
# Process the selected paragraph from PDF 1
with gr.Column():
gr.Markdown("### PDF 1 Analysis")
selected_paragraph_1 = gr.Textbox(label="Selected Paragraph 1 Content", lines=4)
summarize_btn1 = gr.Button("Summarize Text from PDF 1")
summary_textbox_1 = gr.Textbox(label="Summary for PDF 1", lines=2)
summarize_btn1.click(fn=lambda p: process_paragraph_1_sum(p), inputs=paragraph_1_dropdown, outputs=summary_textbox_1)
sentiment_btn1 = gr.Button("Classify Financial Tone from PDF 1")
sentiment_textbox_1 = gr.Textbox(label="Classification for PDF 1", lines=1)
sentiment_btn1.click(fn=lambda p: process_paragraph_1_sent(p), inputs=paragraph_1_dropdown, outputs=sentiment_textbox_1)
analyze_btn1 = gr.Button("Analyze Financial Tone on each sentence with yiyanghkust/finbert-tone")
fin_spans_1 = gr.HighlightedText(label="Financial Tone Analysis for PDF 1")
analyze_btn1.click(fn=lambda p: process_paragraph_1_sent_tone(p), inputs=paragraph_1_dropdown, outputs=fin_spans_1)
analyze_btn1_ = gr.Button("Analyze Financial Tone on each sentence with ProsusAI/finbert")
fin_spans_1_ = gr.HighlightedText(label="Financial Tone Analysis for PDF 1 bis")
analyze_btn1_.click(fn=lambda p: process_paragraph_1_sent_tone_bis(p), inputs=paragraph_1_dropdown, outputs=fin_spans_1_)
# Process the selected paragraph from PDF 2
with gr.Column():
gr.Markdown("### PDF 2 Analysis")
selected_paragraph_2 = gr.Textbox(label="Selected Paragraph 2 Content", lines=4)
selected_paragraph_2.change(show, paragraph_2_dropdown, selected_paragraph_2)
summarize_btn2 = gr.Button("Summarize Text from PDF 2")
summary_textbox_2 = gr.Textbox(label="Summary for PDF 2", lines=2)
summarize_btn2.click(fn=lambda p: process_paragraph_2_sum(p), inputs=paragraph_2_dropdown, outputs=summary_textbox_2)
sentiment_btn2 = gr.Button("Classify Financial Tone from PDF 2")
sentiment_textbox_2 = gr.Textbox(label="Classification for PDF 2", lines=1)
sentiment_btn2.click(fn=lambda p: process_paragraph_2_sent(p), inputs=paragraph_2_dropdown, outputs=sentiment_textbox_2)
analyze_btn2 = gr.Button("Analyze Financial Tone on each sentence with yiyanghkust/finbert-tone")
fin_spans_2 = gr.HighlightedText(label="Financial Tone Analysis for PDF 2")
analyze_btn2.click(fn=lambda p: process_paragraph_2_sent_tone(p), inputs=paragraph_2_dropdown, outputs=fin_spans_2)
analyze_btn2_ = gr.Button("Analyze Financial Tone on each sentence with ProsusAI/finbert")
fin_spans_2_ = gr.HighlightedText(label="Financial Tone Analysis for PDF 2 bis")
analyze_btn2_.click(fn=lambda p: process_paragraph_2_sent_tone_bis(p), inputs=paragraph_2_dropdown, outputs=fin_spans_2_)
with gr.Tab("Financial Report Table Analysis"):
# New tab content goes here
gr.Markdown("## Excel Data Comparison")
with gr.Row():
with gr.Column():
file1 = gr.Dropdown(choices=get_excel_files(PDF_FOLDER), label="Select Excel File 1")
file2 = gr.Dropdown(choices=get_excel_files(PDF_FOLDER), label="Select Excel File 2")
sheet = gr.Dropdown(choices=["GDP", "HICP", "RRE prices", "Unemployment", "CRE prices"], label="Select Sheet for File 1 and 2")
with gr.Column():
result = gr.Image(label="Comparison pLot")
def update_sheets(file):
return get_sheet_names(file)
b1 = gr.Button("Compare Data")
b2 = gr.Button("Extract text information")
with gr.Row():
with gr.Column():
sentiment_results_pdf1 = gr.HighlightedText(label="Sentiment Analysis - PDF 1")
country_1_dropdown = gr.Dropdown(label="Select Country from Excel File 1")
summarize_btn1_country = gr.Button("Summary for the selected country")
text_result_df1 = gr.Textbox(label="Sentence for excel file 1", lines=2)
summarize_btn1_country.click(fn=lambda country, theme: generate_text(stored_df1, country, theme),
inputs=[country_1_dropdown, sheet],
outputs=text_result_df1)
with gr.Column():
sentiment_results_pdf2 = gr.HighlightedText(label="Sentiment Analysis - PDF 2")
country_2_dropdown = gr.Dropdown(label="Select Country from Excel File 2")
summarize_btn2_country = gr.Button("Summary for the selected country")
text_result_df2 = gr.Textbox(label="Sentence for excel file 2", lines=2)
summarize_btn2_country.click(fn=lambda country, theme: generate_text(stored_df2, country, theme),
inputs=[country_2_dropdown, sheet],
outputs=text_result_df2)
# Button to extract text from PDFs and perform sentiment analysis
b1.click(fn=process_and_compare, inputs=[file1, sheet, file2, sheet], outputs=[result,country_1_dropdown, country_2_dropdown])
b2.click(fn=process_pdfs_and_analyze_sentiment, inputs=[file1, file2, sheet], outputs=[sentiment_results_pdf1, sentiment_results_pdf2])
demo.launch()