Spaces:
Runtime error
Runtime error
File size: 1,263 Bytes
6f1901f 831b048 c54dd0d efcf8a5 831b048 efcf8a5 831b048 00d5eee 831b048 00d5eee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import gradio as gr
import transforms
import requests
import io
from PIL import Image
from transformers import pipeline
from torchvision import transforms
title = "Fine Tuned SD Model - Authoral stylization"
description = "Generate images trained in an authoral illustration model."
article = "<p style='text-align: center'><a href='https://news.machinelearning.sg/posts/beautiful_profile_pics_remove_background_image_with_deeplabv3/'>Blog</a> | <a href='https://github.com/eugenesiow/practical-ml'>Github Repo</a></p>"
gr.Interface.load(
"spaces/Cacau/heart-of-painting",
demo = gr.Interface(
fn=greet,
inputs=gr.Textbox(lines=2, placeholder="Name Here..."),
outputs="text",
)
with gr.Blocks(theme=gr.themes.Glass()) as demo:
inputs=[gr.Textbox(label="Prompt", source="input box")]
output=[gr.Ima]
).launch()
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.content
image_bytes = query({
"inputs":gr.Textbox(lines=2, placeholder="Your prompt here..."),
})
# You can access the image with PIL.Image for example
import io
from PIL import Image
image = Image.open(io.BytesIO(image_bytes))
return "This is your generated image:" + image "**Save it in your files!"
demo.launch() |