BenCzechMark / app.py
idolezal's picture
Improved safety of submission race condition
97092f5
raw
history blame
13.8 kB
import os
import regex as re
import gradio as gr
import pandas as pd
from gradio.themes.utils.sizes import text_md
from gradio_modal import Modal
from content import (
HEADER_MARKDOWN,
LEADERBOARD_TAB_TITLE_MARKDOWN,
SUBMISSION_TAB_TITLE_MARKDOWN,
MODAL_SUBMIT_MARKDOWN,
SUBMISSION_DETAILS_MARKDOWN,
RANKING_AFTER_SUBMISSION_MARKDOWN,
MORE_DETAILS_MARKDOWN,
)
from server import LeaderboardServer
leaderboard_server = LeaderboardServer()
SUBMISSION_INPUTS = dict.fromkeys((
"team_name",
"model_name",
"model_type",
"parameters",
"input_length",
"precision",
"description",
"link_to_model",
"submission_file",
)).keys()
def on_submit_pressed():
return gr.update(value='Processing submission...', interactive=False)
def validate_submission_inputs(**inputs):
if any(key for key, value in inputs.items() if key != "description" and value in (None, "")):
raise ValueError('Please fill in all fields (only the description field is optional)')
if not os.path.exists(inputs["submission_file"]):
raise ValueError('File does not exist')
if not (inputs["link_to_model"].startswith("http://") or inputs["link_to_model"].startswith("https://")):
raise ValueError('Link does not starts with "http://" or "https://"')
if not inputs["parameters"] > 0:
raise ValueError('Attribute `Parameters (B)` should be greater than zero')
if not (inputs["input_length"] > 0 and inputs["input_length"] == int(inputs["input_length"])):
raise ValueError('Attribute `Input length (# tokens)` should be greater than zero and integer type')
def process_submission(*inputs):
try:
inputs = dict(zip(SUBMISSION_INPUTS, inputs))
for key in inputs:
if key in ("team_name", "model_name"):
inputs[key] = re.sub(r"""\s+""", " ", inputs[key]).strip()
elif key in ("description", "link_to_model"):
inputs[key] = inputs[key].strip()
validate_submission_inputs(**inputs)
metadata = SUBMISSION_INPUTS - {"submission_file"}
metadata = {key: inputs[key] for key in metadata}
gr.Info('Submission valid, running tournament...')
pre_submit = leaderboard_server.prepare_model_for_submission(inputs["submission_file"], metadata)
except ValueError as err:
gr.Warning(str(err))
return (
gr.update(value='Pre-submit model', visible=True, interactive=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
except Exception as err:
gr.Warning(str(err), duration=None)
return (
gr.update(value='Pre-submit model', visible=True, interactive=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
return (
gr.update(visible=False),
gr.update(visible=True),
gr.update(interactive=True, visible=True),
gr.update(interactive=True, visible=True),
gr.update(visible=True),
gr.update(
value=leaderboard_server.get_leaderboard(pre_submit),
visible=True,
datatype="markdown",
elem_classes="leaderboard-table",
),
)
def submit_results():
leaderboard_server.save_pre_submit()
leaderboard_server.update_leaderboard()
gr.Info('Submission successful!')
return (
gr.update(value='Pre-submit model', visible=True, interactive=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.DataFrame(value=leaderboard_server.get_leaderboard(category=leaderboard_server.tasks_category_overall), visible=True),
gr.update(visible=False),
gr.update(choices=leaderboard_server.submission_ids),
gr.update(value=leaderboard_server.tasks_category_overall),
)
def erase_pre_submit():
with leaderboard_server.pre_submit_lock:
if leaderboard_server.pre_submit:
leaderboard_server.pre_submit = None # NOTE: Is it safe? How to confirm that `submission_id` is equal?
return (
gr.update(value='Pre-submit model', visible=True, interactive=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
def fetch_model_detail(submission_id):
metadata = leaderboard_server.get_model_detail(submission_id)
return (
gr.update(value=metadata['description'], visible=True),
gr.update(value=metadata['link_to_model'], visible=True)
)
def change_leaderboard_category(category):
return gr.update(
value=leaderboard_server.get_leaderboard(category=category),
visible=True,
datatype="markdown",
)
def show_modal():
return gr.update(visible=True)
def hide_modal():
return gr.update(visible=False)
def on_application_load():
leaderboard_server.update_leaderboard()
return (
gr.DataFrame(value=leaderboard_server.get_leaderboard(category=leaderboard_server.tasks_category_overall), visible=True),
gr.update(choices=leaderboard_server.submission_ids),
gr.update(value=leaderboard_server.tasks_category_overall),
)
custom_css = """
footer {visibility: hidden}
.leaderboard-table tr:first-child th {
background-color: var(--table-even-background-fill);
}
.leaderboard-table th:first-child, .leaderboard-table td:first-child {
position: sticky;
left: 0;
z-index: 1;
background-color: inherit;
}
.leaderboard-table th:nth-child(2), .leaderboard-table td:nth-child(2) {
position: sticky;
left: var(--cell-width-0);
z-index: 1;
background-color: inherit;
}
.leaderboard-table th:nth-child(3), .leaderboard-table td:nth-child(3) {
position: sticky;
left: calc(var(--cell-width-0) + var(--cell-width-1));
z-index: 1;
background-color: inherit;
}
.leaderboard-table th:nth-child(4), .leaderboard-table td:nth-child(4) {
position: sticky;
left: calc(var(--cell-width-0) + var(--cell-width-1) + var(--cell-width-2));
z-index: 1;
background-color: inherit;
}
.leaderboard-table th:nth-child(5), .leaderboard-table td:nth-child(5) {
position: sticky;
left: calc(var(--cell-width-0) + var(--cell-width-1) + var(--cell-width-2) + var(--cell-width-3));
z-index: 1;
background-color: inherit;
}
.leaderboard-table th:nth-child(5)::after, .leaderboard-table td:nth-child(5)::after {
box-shadow: inset 5px 0px 4px -4px var(--border-color-primary);
position: absolute;
top: 0;
right: 0;
bottom: -1px;
content: "";
width: 30px;
transform: translateX(100%);
}
"""
with gr.Blocks(theme=gr.themes.Soft(text_size=text_md), css=custom_css) as main:
gr.Markdown(HEADER_MARKDOWN)
with gr.Tabs():
with gr.TabItem('Leaderboard'):
with gr.Column():
gr.Markdown(LEADERBOARD_TAB_TITLE_MARKDOWN)
with gr.Row():
category_of_tasks = gr.Dropdown(
choices=[leaderboard_server.tasks_category_overall] + list(leaderboard_server.tasks_categories),
value=leaderboard_server.tasks_category_overall,
label="Category of benchmarks",
interactive=True,
)
with gr.Row():
results_table = gr.DataFrame(
leaderboard_server.get_leaderboard(category=leaderboard_server.tasks_category_overall),
interactive=False,
label=None,
visible=True,
datatype="markdown",
elem_classes="leaderboard-table",
)
category_of_tasks.change(
fn=change_leaderboard_category,
inputs=category_of_tasks,
outputs=results_table,
)
with gr.TabItem('Model details'):
gr.Markdown(MORE_DETAILS_MARKDOWN)
detail_dropdown = gr.Dropdown(
choices=leaderboard_server.submission_ids, # TODO: team_name/model_name
label="Select model",
interactive=True,
)
with gr.Row():
model_description = gr.Text(value='', label='Model description', visible=False, interactive=False)
model_url = gr.Text(value='', label='Model url', visible=False, interactive=False)
detail_dropdown.change(
fn=fetch_model_detail,
inputs=[detail_dropdown],
outputs=[model_description, model_url],
)
with gr.TabItem('Submission'):
with gr.Column():
gr.Markdown(SUBMISSION_TAB_TITLE_MARKDOWN)
submission_inputs = dict.fromkeys(SUBMISSION_INPUTS)
with gr.Row():
submission_inputs["team_name"] = gr.Textbox(label='Team name', type='text')
submission_inputs["model_name"] = gr.Textbox(label='Model name', type='text')
submission_inputs["model_type"] = gr.Dropdown(
label="Model type",
choices=("chat", "pretrained", "ensemble"),
)
submission_inputs["parameters"] = gr.Number(
label='Parameters (B)',
value=0.01,
step=0.01,
)
with gr.Row():
submission_inputs["input_length"] = gr.Number(
label='Input length (# tokens)',
value=0,
step=1,
)
submission_inputs["precision"] = gr.Dropdown(
label="Precision",
choices=("float32", "bfloat32", "float16", "bfloat16", "8bit", "4bit"),
)
submission_inputs["description"] = gr.Textbox(label='Description', type='text')
submission_inputs["link_to_model"] = gr.Textbox(label='Link to model', type='text')
submission_inputs["submission_file"] = gr.File(label='Upload your results', type='filepath')
pre_submission_btn = gr.Button(value='Pre-submit model', interactive=True)
submit_prompt = gr.Markdown(
SUBMISSION_DETAILS_MARKDOWN,
visible=False
)
pre_submit_info = gr.Markdown(
RANKING_AFTER_SUBMISSION_MARKDOWN,
visible=False
)
pre_submit_table = gr.DataFrame(pd.DataFrame(), interactive=False, label=None, visible=False)
submission_btn_yes = gr.Button(value='Submit model', interactive=False, visible=False)
submission_btn_no = gr.Button(value='Reverse process', interactive=False, visible=False)
with Modal(visible=False) as modal_submit:
gr.Markdown(MODAL_SUBMIT_MARKDOWN)
modal_submit_yes = gr.Button("Yes", interactive=True)
modal_submit_no = gr.Button("No", interactive=True)
pre_submission_btn.click(
fn=on_submit_pressed,
concurrency_limit=1,
outputs=[pre_submission_btn],
).then(
fn=process_submission,
inputs=list(submission_inputs.values()),
outputs=[
pre_submission_btn,
submit_prompt,
submission_btn_yes,
submission_btn_no,
pre_submit_info,
pre_submit_table,
],
)
submission_btn_yes.click(
fn=show_modal,
outputs=[modal_submit]
)
modal_submit_yes.click(
fn=submit_results,
outputs=[
pre_submission_btn,
submission_btn_yes,
submission_btn_no,
submit_prompt,
pre_submit_info,
pre_submit_table,
results_table,
modal_submit,
detail_dropdown,
category_of_tasks,
],
)
modal_submit_no.click(
fn=hide_modal,
outputs=[modal_submit]
)
submission_btn_no.click(
fn=erase_pre_submit,
outputs=[
pre_submission_btn,
submission_btn_yes,
submission_btn_no,
submit_prompt,
pre_submit_info,
pre_submit_table,
],
)
main.load(
on_application_load,
inputs=None,
outputs=[
results_table,
detail_dropdown,
category_of_tasks,
]
)
main.launch()