Spaces:
Running
Running
import argparse | |
import json | |
from collections import defaultdict | |
from typing import Sequence | |
import numpy as np | |
from numba import njit, prange | |
from scipy.stats import ttest_rel | |
from sklearn.metrics import roc_curve, auc | |
from tqdm import tqdm | |
SUPPORTED_METRICS = [ | |
"avg_mcauroc", # for classification tasks | |
"exact_match", # for QA tasks | |
"acc", # for multichoice tasks | |
"rouge_raw_r2_mid_f", # for summarization tasks | |
"word_perplexity", # for language modeling tasks | |
] | |
def _get_CMs(i, probabilities, references, thresholds): | |
confusion_matrices = [] | |
for threshold in thresholds[i]: | |
TP = 0 | |
FP = 0 | |
TN = 0 | |
FN = 0 | |
for j in range(len(probabilities)): | |
if probabilities[j][i] >= threshold: | |
if references[j] == i: | |
TP += 1 | |
else: | |
FP += 1 | |
else: | |
if references[j] == i: | |
FN += 1 | |
else: | |
TN += 1 | |
cm = {"TP": TP, "FP": FP, "TN": TN, "FN": FN, "threshold": threshold, "class": i} | |
confusion_matrices.append(cm) | |
return confusion_matrices | |
def compute_significance_ttest(scores_A, scores_B): | |
delta = np.mean(scores_A) - np.mean(scores_B) | |
if delta <= 0: | |
return 1.0, delta | |
t, p = ttest_rel(scores_A, scores_B) | |
# correct for one-tailed test | |
p_value = p / 2 | |
return p_value, delta | |
def compute_significance_bootstrap(scores_A, scores_B): | |
n = len(scores_A) | |
R = 1_000 | |
delta_orig = np.mean(scores_A) - np.mean(scores_B) | |
if delta_orig <= 0: | |
return 1.0, delta_orig | |
r = 0 | |
for _ in prange(R): | |
samples = np.random.choice(n, n, replace=True) | |
temp_A = scores_A[samples] | |
temp_B = scores_B[samples] | |
delta = np.mean(temp_A) - np.mean(temp_B) | |
if delta > 2 * delta_orig: | |
r += 1 | |
pval = r / R | |
return pval, delta_orig | |
def compute_significance_avg_mcauroc(probsA: Sequence[Sequence[float]], referencesA: Sequence[int], | |
probsB: Sequence[Sequence[float]], referencesB: Sequence[int]): | |
# compute MC-AUC for model A | |
model_A_scores = get_mc_auc_samples(probsA, referencesA, Nsamples=100) | |
model_B_scores = get_mc_auc_samples(probsB, referencesB, Nsamples=100) | |
delta = np.mean(model_A_scores) - np.mean(model_B_scores) | |
# one-tailed test | |
p_value = ((model_A_scores[:, np.newaxis] <= model_B_scores[np.newaxis, :]).sum() | |
/ (len(model_A_scores) * len(model_B_scores))) | |
return p_value, delta | |
# Helper function to convert confusion matrices to numba-compatible arrays | |
def convert_confusion_matrices(confusion_matrices): | |
num_thresholds = len(confusion_matrices) | |
tp = np.empty(num_thresholds) | |
fn = np.empty(num_thresholds) | |
for k in range(num_thresholds): | |
tp[k] = confusion_matrices[k]["TP"] | |
fn[k] = confusion_matrices[k]["FN"] | |
return tp, fn | |
def compute_tpr_variates(tp, fn, 位, Nsamples, num_thresholds): | |
tpr_variates_for_each_fpr = np.empty((num_thresholds, Nsamples)) | |
for k in prange(num_thresholds): | |
tpr_variates_for_each_fpr[k, :] = np.random.beta(tp[k] + 位, fn[k] + 位, Nsamples) | |
return tpr_variates_for_each_fpr | |
def get_mc_auc_samples(probs, references, Nsamples=1_000_000): | |
n_classes = list(range(len(probs[0]))) | |
fpr = dict() | |
thresholds = dict() | |
# compute AUC for every class | |
auc_scores_per_class = [] | |
for i in range(len(n_classes)): | |
# for i-th class vs all others | |
fpr[i], _, thresholds[i] = roc_curve(y_true=[1 if x == n_classes[i] else 0 for x in references], | |
y_score=[prob[i] for prob in probs]) | |
confusion_matrices = _get_CMs(i, probs, references, thresholds) | |
tp, fn = convert_confusion_matrices(confusion_matrices) | |
位 = 1.0 # <- Flat prior | |
# 位 = 0.5 # <- Jeffrey's prior | |
# sample variates for every threshold | |
# tpr_variates_for_each_fpr = [] | |
# for k in range(len(thresholds[i])): | |
# tpr_variates_for_each_fpr.append( | |
# numpy.random.beta(confusion_matrices[k]["TP"] + 位, confusion_matrices[k]["FN"] + 位, Nsamples)) | |
tpr_variates_for_each_fpr = compute_tpr_variates(tp, fn, 位, Nsamples, len(thresholds[i])) | |
# fprs x tpr_variates | |
# tpr_variates_for_each_fpr = np.array(tpr_variates_for_each_fpr) | |
# now pick 1 variate for each fpr, and compute AUC | |
auc_scores = [] | |
for tpr_variates in tpr_variates_for_each_fpr.T: | |
auc_score = auc(fpr[i], tpr_variates) | |
# if numpy.isnan(auc_score): | |
# auc_score = 0 | |
auc_scores.append(auc_score) | |
auc_scores_per_class.append(auc_scores) | |
auc_scores_per_class = np.array(auc_scores_per_class) | |
mcauc_scores = np.mean(auc_scores_per_class, axis=0) | |
return mcauc_scores | |
def read_json(file_path): | |
data = defaultdict(list) | |
with open(file_path, "r") as f: | |
fc = json.load(f) | |
for task, results in fc["predictions"].items(): | |
# determine the metric | |
metric = None | |
for key in SUPPORTED_METRICS: | |
if key in results[0]: | |
metric = key | |
break | |
if metric is None: | |
raise ValueError(f"Unsupported metric in {file_path}") | |
if metric == "avg_mcauroc": | |
local_data = [line[metric] for line in fc["predictions"][task]] | |
unzipped_list = list(zip(*local_data)) | |
golds = unzipped_list[0] | |
probs = unzipped_list[1] | |
data[task] = (golds, probs), metric | |
else: | |
scores = [line[metric] for line in fc["predictions"][task]] | |
data[task] = scores, metric | |
# make sure all tasks are submitted | |
METADATA_FILE = "tasks_metadata.json" | |
with open(METADATA_FILE, "r") as f: | |
metadata = json.load(f) | |
all_tasks = list(metadata.keys()) | |
all_missing_tasks = [] | |
for task in all_tasks: | |
if task not in data: | |
all_missing_tasks.append(task) | |
if len(all_missing_tasks) > 0: | |
EOLN = "\n" | |
raise ValueError(f"Missing tasks in {file_path}: {EOLN.join(all_missing_tasks)}") | |
return data | |
def process_task(task, dataA, dataB, significance_level): | |
metricA = dataA[task][1] | |
metricB = dataB[task][1] | |
assert metricA == metricB | |
assert len(dataA[task]) == len(dataB[task]) | |
if metricA == "avg_mcauroc": | |
p_value, delta = compute_significance_avg_mcauroc(probsA=dataA[task][0][1], referencesA=dataA[task][0][0], | |
probsB=dataB[task][0][1], referencesB=dataB[task][0][0]) | |
elif metricA in ["acc", "exact_match"]: | |
p_value, delta = compute_significance_ttest(scores_A=dataA[task][0], scores_B=dataB[task][0]) | |
elif metricA in ["rouge_raw_r2_mid_f", "word_perplexity"]: | |
p_value, delta = compute_significance_bootstrap(scores_A=np.array(dataA[task][0]), | |
scores_B=np.array(dataB[task][0])) | |
else: | |
raise ValueError(f"Unsupported metric {metricA}") | |
if delta <= 0: | |
p_value = 1.0 | |
return task, { | |
"significant": not (p_value > significance_level), | |
"p_value": p_value, | |
"delta": delta, | |
} | |
def check_significance(fileA, fileB, significance_level=0.05): | |
dataA = read_json(fileA) | |
dataB = read_json(fileB) | |
decisions = dict() | |
_iter = tqdm(list(dataA.keys())) | |
for task in _iter: | |
_iter.set_description(f"Processing task: {task}") | |
metricA = dataA[task][1] | |
metricB = dataB[task][1] | |
assert metricA == metricB | |
assert len(dataA[task]) == len(dataB[task]) | |
if metricA == "avg_mcauroc": | |
p_value, delta = compute_significance_avg_mcauroc(probsA=dataA[task][0][1], referencesA=dataA[task][0][0], | |
probsB=dataB[task][0][1], referencesB=dataB[task][0][0]) | |
elif metricA in ["acc", "exact_match"]: | |
p_value, delta = compute_significance_ttest(scores_A=dataA[task][0], scores_B=dataB[task][0]) | |
elif metricA in ["rouge_raw_r2_mid_f", "word_perplexity"]: | |
p_value, delta = compute_significance_bootstrap(scores_A=np.array(dataA[task][0]), | |
scores_B=np.array(dataB[task][0])) | |
else: | |
raise ValueError(f"Unsupported metric {metricA}") | |
if delta <= 0: | |
p_value = 1.0 | |
decisions[task] = { | |
"significant": not (p_value > significance_level), | |
"p_value": p_value, | |
"delta": delta, | |
} | |
return decisions | |
def main(): | |
parser = argparse.ArgumentParser(description="One-tailed test if model A improves over model B.") | |
parser.add_argument("--modelA", help="ModelA JSON file from lm harness.") | |
parser.add_argument("--modelB", help="ModelB JSON file from lm harness.") | |
parser.add_argument("--significance_level", type=float, default=0.05, help="Significance level (e.g., 0.05)") | |
args = parser.parse_args() | |
result = check_significance(args.modelA, args.modelB, args.significance_level) | |
print(json.dumps(result, indent=2)) | |
# harness already returns stderr estimate for sampling distribution | |
# see https://github.com/EleutherAI/lm-evaluation-harness/blob/6433bd3fe3033d302b22cdcd53af237e9039ef29/lm_eval/api/metrics.py#L213 | |
if __name__ == "__main__": | |
check_significance("../csmpt.json", "../llama3_instruct.json", 0.05) | |
main() | |