BenCzechMark / server.py
idolezal's picture
Replace categories
2bd73c2
raw
history blame
7.19 kB
import copy
import glob
import json
import os
import gradio as gr
import pandas as pd
from huggingface_hub import HfApi, snapshot_download
from compare_significance import check_significance, SUPPORTED_METRICS
VISIBLE_METRICS = SUPPORTED_METRICS + ["macro_f1"]
api = HfApi()
ORG = "xdolez52"
REPO = f"{ORG}/LLM_benchmark_data"
HF_TOKEN = os.environ.get("HF_TOKEN")
TASKS_METADATA_PATH = "./tasks_metadata.json"
categories = ['Czech Math Reasoning', 'General Reasoning', 'Historical', 'Knowledge', 'Language Modeling', 'NER', 'NLI', 'Sentiment', 'Summarization', 'Syntactical Reasoning', 'Topic Classification']
class LeaderboardServer:
def __init__(self):
self.server_address = REPO
self.repo_type = "dataset"
self.local_leaderboard = snapshot_download(self.server_address, repo_type=self.repo_type, token=HF_TOKEN,
local_dir="./")
self.submisssion_id_to_file = {} # Map submission ids to file paths
self.tasks_metadata = json.load(open(TASKS_METADATA_PATH))['tasks']
self.submission_ids = set()
self.fetch_existing_models()
self.tournament_results = self.load_tournament_results()
self.pre_submit = None
def update_leaderboard(self):
self.local_leaderboard = snapshot_download(self.server_address, repo_type=self.repo_type, token=HF_TOKEN,
local_dir="./")
self.fetch_existing_models()
self.tournament_results = self.load_tournament_results()
def load_tournament_results(self):
metadata_rank_paths = os.path.join(self.local_leaderboard, "tournament.json")
if not os.path.exists(metadata_rank_paths):
return {}
with open(metadata_rank_paths) as ranks_file:
results = json.load(ranks_file)
return results
def fetch_existing_models(self):
# Models data
for submission in glob.glob(os.path.join(self.local_leaderboard, "data") + "/*.json"):
data = json.load(open(submission))
metadata = data.get('metadata')
if metadata is None:
continue
submission_id = metadata["team_name"] + "_" + metadata["submission_id"]
self.submission_ids.add(submission_id)
self.submisssion_id_to_file[submission_id] = submission
def get_leaderboard(self, tournament_results=None):
results = tournament_results if tournament_results else self.tournament_results
if len(results) == 0:
return pd.DataFrame(columns=['No submissions yet'])
else:
processed_results = []
for submission in results.keys():
path = self.submisssion_id_to_file.get(submission)
if path is None:
if self.pre_submit and submission == self.pre_submit[1]:
data = json.load(open(self.pre_submit[2]))
else:
raise gr.Error(f"Internal error: Submission [{submission}] not found")
elif path:
data = json.load(open(path))
else:
raise gr.Error(f"Submission [{submission}] not found")
submission_id = data["metadata"]["team_name"] + "_" + data["metadata"]["submission_id"]
local_results = {}
for task in self.tasks_metadata.keys():
local_results[task] = 0
for model in results[submission].keys():
if results[submission][model][task]:
local_results[task] += 1
for metric in VISIBLE_METRICS:
metric_value = data['results'][task].get(metric)
if metric_value is not None:
local_results[task + "_" + metric] = metric_value
local_results["submission_id"] = submission_id
if self.pre_submit and submission == self.pre_submit[1]:
processed_results.insert(0, local_results)
else:
processed_results.append(local_results)
dataframe = pd.DataFrame.from_records(processed_results)
df_order = (["submission_id"] + list(self.tasks_metadata.keys()) +
[col for col in dataframe.columns if
col != "submission_id" and col not in self.tasks_metadata.keys()])
dataframe = dataframe[df_order]
dataframe = dataframe.rename(columns={key: value["name"] for key, value in self.tasks_metadata.items()})
return dataframe
def start_tournament(self, new_model_id, new_model_file):
new_tournament = copy.deepcopy(self.tournament_results)
new_tournament[new_model_id] = {}
new_tournament[new_model_id][new_model_id] = {task: False for task in self.tasks_metadata.keys()}
for model in self.submission_ids:
res = check_significance(new_model_file, self.submisssion_id_to_file[model])
res_inverse = check_significance(self.submisssion_id_to_file[model], new_model_file)
new_tournament[new_model_id][model] = {
task: data["significant"] for task, data in res.items()
}
new_tournament[model][new_model_id] = {
task: data["significant"] for task, data in res_inverse.items()
}
return new_tournament
def prepare_model_for_submission(self, file, metadata) -> None:
with open(file, "r") as f:
data = json.load(f)
data["metadata"] = metadata
with open(file, "w") as f:
json.dump(data, f)
model_id = metadata["team_name"] + "_" + metadata["submission_id"]
tournament_results = self.start_tournament(model_id, file)
self.pre_submit = tournament_results, model_id, file
def save_pre_submit(self):
if self.pre_submit:
tournament_results, model_id, file = self.pre_submit
filename = os.path.basename(file)
api.upload_file(
path_or_fileobj=file,
path_in_repo=f"data/{model_id}_{filename}",
repo_id=self.server_address,
repo_type=self.repo_type,
token=HF_TOKEN,
)
# Temporary save tournament results
tournament_results_path = os.path.join(self.local_leaderboard, "tournament.json")
with open(tournament_results_path, "w") as f:
json.dump(tournament_results, f)
api.upload_file(
path_or_fileobj=tournament_results_path,
path_in_repo="tournament.json",
repo_id=self.server_address,
repo_type=self.repo_type,
token=HF_TOKEN,
)
def get_model_detail(self, submission_id):
path = self.submisssion_id_to_file.get(submission_id)
if path is None:
raise gr.Error(f"Submission [{submission_id}] not found")
data = json.load(open(path))
return data["metadata"]