Spaces:
Running
Running
File size: 48,551 Bytes
b66f230 8e9c817 b35e51f e576387 461d770 23ee797 658f16d f3684c5 97092f5 b66f230 7d453b5 b66f230 23ee797 23931c3 b66f230 ed52286 36141d4 1dad510 b66f230 ff6fff7 9225102 20d80fe e0ba174 34bacde 1405ed9 34bacde 7d453b5 6362604 23ee797 7d453b5 23ee797 e0ba174 23ee797 e0ba174 23ee797 7d453b5 23ee797 7d453b5 23ee797 e0ba174 822c3a6 e0ba174 23ee797 2e42a59 d10a698 ec6e1e5 b66f230 1dad510 934ac05 ec6e1e5 690c597 6bae7e8 07fde84 32a069d ec6e1e5 b66f230 ec6e1e5 1c921ec 8bfc448 b299ccd 136803a 3b741bb 1fc0ff9 911ea92 32a069d b299ccd ec6e1e5 2e42a59 6656d82 3b741bb b66f230 3b741bb b299ccd ec6e1e5 b299ccd 1fc0ff9 ec6e1e5 3daddec 3b741bb 1fc0ff9 690c597 32a069d 1fc0ff9 136803a 32a069d 1fc0ff9 6874981 136803a 32a069d 6874981 2e909a5 6874981 32a069d 136803a 32a069d 136803a 3f5825a 32a069d acca45a 32a069d b66f230 b299ccd b66f230 6bae7e8 bc7f740 6bae7e8 bc7f740 6bae7e8 bc7f740 d0e7a00 bc7f740 6bae7e8 690c597 bc7f740 b66f230 b299ccd 3f5825a b299ccd c6d7faa b299ccd b66f230 136803a f03ebc5 dfdc202 f03ebc5 f69c211 2e42a59 f69c211 3b741bb f69c211 136803a f69c211 136803a dfdc202 136803a dfdc202 136803a 4123571 f69c211 4123571 b66f230 edb55ca 188002f 39ce08a c3d760a 39ce08a c3d760a 39ce08a a425d37 3b8382c 3eee636 3b8382c 6874981 3b8382c 8c3991f 3b8382c 6762695 3b8382c 2ddb0f5 5409a8a 387e6ad 8c3991f 690c597 96c0414 3b8382c 96c0414 3b8382c 96c0414 8c3991f 3f5825a 96c0414 3f5825a 96c0414 2ddb0f5 8c3991f 2ddb0f5 96c0414 8c3991f 2ddb0f5 96c0414 8c3991f 96c0414 8c3991f 32a069d 96c0414 32a069d 3b8382c 32a069d 97092f5 1fc0ff9 4a56366 1fc0ff9 96c0414 ec6e1e5 b66f230 ec6e1e5 8bfc448 ec6e1e5 6762695 ec6e1e5 b66f230 8bfc448 658f16d 3f5825a ec6e1e5 f0196fa ec6e1e5 690c597 ec6e1e5 78879a4 ec6e1e5 690c597 ec6e1e5 9225102 ec6e1e5 7bc6ac3 ec6e1e5 f0196fa ec6e1e5 690c597 ec6e1e5 3f5825a 96c0414 3f5825a 96c0414 c6d7faa 3f5825a ec6e1e5 3f5825a ec6e1e5 f0196fa ec6e1e5 5928b80 ec6e1e5 96c0414 ec6e1e5 96c0414 ec6e1e5 c6d7faa ec6e1e5 81fdab8 ec6e1e5 2be8bdf ec6e1e5 81fdab8 ec6e1e5 81fdab8 ec6e1e5 81fdab8 ec6e1e5 b66f230 54b531c cfb07ff 54b531c b35e51f ec6e1e5 2e42a59 dfdc202 54b531c dfdc202 23ee797 dfdc202 ec6e1e5 cfb07ff 23ee797 cfb07ff ec6e1e5 cfb07ff 91b9cf7 cfb07ff 6196b87 cfb07ff b176fe0 b66f230 52f1ee8 090213e 52f1ee8 7474e5d 52f1ee8 090213e 52f1ee8 090213e 52f1ee8 b35e51f 658f16d b35e51f d8f2525 b35e51f 658f16d 6762695 2e42a59 97092f5 b66f230 b35e51f 3f5825a b35e51f e576387 b66f230 219886f b35e51f 0e8ff48 2e42a59 0e8ff48 2e42a59 0e8ff48 2e42a59 0e8ff48 2e42a59 0e8ff48 2e42a59 97092f5 2e42a59 73f436c 2e42a59 f6916e3 54b531c 36141d4 54b531c 36141d4 54b531c 2e42a59 6762695 0e8ff48 6762695 2e42a59 9d3d879 73f436c 2e42a59 9d3d879 73f436c 2e42a59 e2d6d6c 2e42a59 97092f5 b176fe0 97092f5 2e42a59 23931c3 8ae0f62 3d0b427 934ac05 3d0b427 b299ccd 3d0b427 934ac05 3d0b427 23931c3 952f194 8bfc448 3f5825a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 |
import copy
import glob
import json
import os
# Necessary for `requests`. Without set correct path or empty string it fails during process HTTPS connection with this: [Errno 101] Network is unreachable
if os.path.exists("/etc/ssl/certs/ca-certificates.crt"):
os.environ["CURL_CA_BUNDLE"] = "/etc/ssl/certs/ca-certificates.crt"
os.environ["REQUESTS_CA_BUNDLE"] = "/etc/ssl/certs/ca-certificates.crt"
else:
os.environ["CURL_CA_BUNDLE"] = ""
os.environ["REQUESTS_CA_BUNDLE"] = ""
print(f"{os.environ.get('CURL_CA_BUNDLE') = }")
print(f"{os.environ.get('REQUESTS_CA_BUNDLE') = }")
import hashlib
import time
from datetime import datetime, timezone
import requests
from collections import namedtuple
from xml.sax.saxutils import escape as xmlEscape, quoteattr as xmlQuoteAttr
from threading import Lock
import regex as re
import gradio as gr
import pandas as pd
from huggingface_hub import HfApi, snapshot_download
from compare_significance import SUPPORTED_METRICS
VISIBLE_METRICS = SUPPORTED_METRICS + ["macro_f1"]
api = HfApi()
HF_TOKEN = os.environ["HF_TOKEN"]
HF_RESULTS_DATASET = os.environ["HF_RESULTS_DATASET"] # <HF_RESULTS_DATASET> ::= <owner> "/" <dataset name>; e.g. CZLC/LLM_benchmark_data
# For testing purpose
HF_FAKE_TOURNAMENT = bool(int(os.environ.get("HF_FAKE_TOURNAMENT", "0")))
TASKS_METADATA_PATH = "./tasks_metadata.json"
MARKDOWN_SPECIAL_CHARACTERS = {
"#": "#", # for usage in xml.sax.saxutils.escape as entities must be first
"\\": "\",
"`": "`",
"*": "*",
"_": "_",
"{": "{",
"}": "}",
"[": "[",
"]": "]",
"(": "(",
")": ")",
"+": "+",
"-": "-",
".": ".",
"!": "!",
"=": "=",
"|": "|"
}
def uniqifyList(seq, order_preserving=True):
if order_preserving:
seen = set()
return [x for x in seq if x not in seen and not seen.add(x)]
else:
return list(set(seq))
def xmlAndMarkdownEscape(text):
return xmlEscape(text, MARKDOWN_SPECIAL_CHARACTERS)
class CheckSignificanceError(Exception):
pass
def check_significance_is_reachable():
result_url = 'https://czechllm.fit.vutbr.cz/benczechmark-leaderboard/compare_significance/results/test'
try:
check_significance_wait_for_result(result_url)
except:
return False
return True
REGEX_CONNECT_TIMEOUT_ERROR = re.compile(r"""ConnectTimeoutError\(.*'(.*timed out.*)'""")
def get_timeout_error_msg(exception):
e = exception
if isinstance(e, requests.exceptions.ConnectTimeout):
error_msg = REGEX_CONNECT_TIMEOUT_ERROR.search(str(e))
if error_msg:
error_msg = error_msg.group(1)
else:
error_msg = str(e).rsplit(":", 1)[-1].strip()
else:
error_msg = str(e).rsplit(":", 1)[-1].strip()
return error_msg
def check_significance_repeat_on_conn_timeout(repeat, fn, *args, **kwargs):
while True:
try:
result = fn(*args, **kwargs)
except requests.exceptions.Timeout as e:
error_msg = get_timeout_error_msg(e)
if repeat:
print(error_msg, f"({repeat = })")
if isinstance(repeat, int):
repeat -= 1
continue
else:
raise CheckSignificanceError(error_msg)
else:
return result
def check_significance_send_task(model_a_path, model_b_path, repeat_on_conn_timeout=10):
url = 'https://czechllm.fit.vutbr.cz/benczechmark-leaderboard/compare_significance/'
# prepare and send request
with (
open(model_a_path, 'rb') as model_a_fp,
open(model_b_path, 'rb') as model_b_fp,
):
files = {
'model_a': model_a_fp,
'model_b': model_b_fp,
}
response = check_significance_repeat_on_conn_timeout(
repeat_on_conn_timeout,
requests.post, url, files=files, timeout=60 * 5
)
# check response
if response.status_code == 202:
result_url = response.url
#task_id = response.json()['task_id']
elif response.status_code == 429:
raise CheckSignificanceError('Server is too busy. Please try again later.')
else:
raise CheckSignificanceError(f'Failed to submit task. Status code: {response.status_code}')
return result_url
def check_significance_wait_for_result(result_url, repeat_on_conn_timeout=10):
while True:
response = check_significance_repeat_on_conn_timeout(
repeat_on_conn_timeout,
requests.get, result_url, timeout=60 * 5
)
if response.status_code == 200:
result = response.json()
break
elif response.status_code == 202:
time.sleep(5)
else:
raise CheckSignificanceError(f'Failed to get result. Status code: {response.status_code}')
if result["state"] == "COMPLETED":
return result['result']
else:
raise CheckSignificanceError(result['result']['error'])
def check_significance(model_a_path, model_b_path):
result_url = check_significance_send_task(model_a_path, model_b_path)
result = check_significance_wait_for_result(result_url)
return result
class NoneLock:
def __init__(self, *args, **kwargs):
pass
def __enter__(self):
return True
def __exit__(self, exc_type, exc_val, exc_tb):
return
def __call__(self, *args, **kwargs):
return NoneLock(*args, **kwargs)
class TimeoutLock:
def __init__(self, lock=None, timeout=-1):
self.lock = lock or Lock()
self.timeout = timeout
self._lock_acquired = False
def __enter__(self):
acquired = self.lock.acquire(timeout=self.timeout)
if acquired:
self._lock_acquired = True
return acquired
def __exit__(self, exc_type, exc_val, exc_tb):
if self._lock_acquired:
self.lock.release()
self._lock_acquired = False
def __call__(self, timeout):
return TimeoutLock(lock=self.lock, timeout=timeout)
class _ReadLock:
def __init__(self, lock):
self._lock = lock
self.reading = 0
def __enter__(self):
with self._lock:
self.reading += 1
def __exit__(self, exc_type, exc_value, traceback):
with self._lock:
self.reading -= 1
class ReadWriteLock:
"""
Zámek, který ověří, že nikdo nečte když se zapisuje a že zapisuje pouze jeden
"""
def __init__(self):
self._lock = Lock()
self.ro = _ReadLock(self._lock)
self.rw = self
def __enter__(self):
self._lock.acquire()
while True:
reading = self.ro.reading
if reading > 0:
self._lock.release()
time.sleep(1)
self._lock.acquire()
elif reading < 0:
self._lock.release()
raise RuntimeError()
else:
return
def __exit__(self, exc_type, exc_value, traceback):
self._lock.release()
class LeaderboardServer:
def __init__(self):
self.SERVER_ADDRESS = HF_RESULTS_DATASET
self.REPO_TYPE = "dataset"
self.TASKS_METADATA = json.load(open(TASKS_METADATA_PATH))
self.TASKS_CATEGORIES = {self.TASKS_METADATA[task]["category"] for task in self.TASKS_METADATA}
self.TASKS_CATEGORY_OVERALL = "Overall"
self.TASKS_CATEGORY_OVERALL_DETAILS = "Overall with details"
self.CATEGORY_TO_TASK_ABBREVIATION_TO_DETAILS = self._prepare_category_to_task_abbr_to_details()
self.MAX_LENGTH_OF_MODEL_TITLE = 28
self.DIR_DATAFRAMES_CSV = "./dataframes_csv"
self.var_lock = ReadWriteLock()
self.submission_ids = set()
self.submission_id_to_file = {} # Map submission ids to file paths
self.submission_id_to_model_title = {}
self.submission_id_to_data = {} # Only data (results and metadata) using by leaderboard
self.tournament_results = None
self.tournament_results_corrupted = False
self.tournament_results_integrity_solving = False
self.tournament_results_integrity_solving_progress = 0
self.leaderboard_dataframes = {} # For each category
self.tournament_dataframes = {} # For each submission_id and category
self.leaderboard_dataframes_csv = {} # For each category
self.tournament_dataframes_csv = {} # For each submission_id and category
self.results_dataset_local_snapshot_lock = ReadWriteLock()
self.results_dataset_local_snapshot = None
self.pre_submit = {}
self.submit_lock = TimeoutLock()
self.results_dataset_integrity_check() # Check integrity of the results dataset after (re)start Hugging Face Space
self.update_leaderboard()
def _update_models_and_tournament_results(self):
with self.results_dataset_local_snapshot_lock.rw:
self.results_dataset_local_snapshot = snapshot_download(
self.SERVER_ADDRESS,
repo_type=self.REPO_TYPE,
token=HF_TOKEN,
local_dir="./",
)
self.fetch_existing_models()
tournament_results = self.load_tournament_results()
with self.var_lock.rw:
self.tournament_results = tournament_results
def update_leaderboard(self):
self._update_models_and_tournament_results()
categories = [self.TASKS_CATEGORY_OVERALL, self.TASKS_CATEGORY_OVERALL_DETAILS] + sorted(self.TASKS_CATEGORIES)
leaderboard_dataframes = {
category: self._get_leaderboard(category=category) if not self.tournament_results_corrupted else pd.DataFrame(columns=['Corrupted, please check integrity'])
for category in categories
}
with self.var_lock.ro:
submission_ids = self.submission_ids
tournament_dataframes = {
submission_id: {
category: self._get_model_tournament_table(submission_id, category) if not self.tournament_results_corrupted else pd.DataFrame(columns=['Corrupted, please check integrity'])
for category in categories
}
for submission_id in submission_ids
}
with self.var_lock.rw:
self.leaderboard_dataframes = leaderboard_dataframes
self.tournament_dataframes = tournament_dataframes
leaderboard_dataframes_csv = {
category: self._dataframe_to_csv(
self._get_leaderboard(category=category, to_csv=True) if not self.tournament_results_corrupted else pd.DataFrame(columns=['Corrupted, please check integrity']),
f"Leaderboard - {category}.csv"
)
for category in categories
}
with self.var_lock.ro:
tournament_dataframes_csv = {
submission_id: {
category: self._dataframe_to_csv(
self._get_model_tournament_table(submission_id, category, to_csv=True) if not self.tournament_results_corrupted else pd.DataFrame(columns=['Corrupted, please check integrity']),
f"Tournament table - {self.submission_id_to_data[submission_id]['submission_metadata']['model_name'][:self.MAX_LENGTH_OF_MODEL_TITLE].replace('/', '_')} - {category}.csv",
)
for category in categories
}
for submission_id in submission_ids
}
with self.var_lock.rw:
self.leaderboard_dataframes_csv = leaderboard_dataframes_csv
self.tournament_dataframes_csv = tournament_dataframes_csv
def load_tournament_results(self):
with self.results_dataset_local_snapshot_lock.ro:
metadata_rank_paths = os.path.join(self.results_dataset_local_snapshot, "tournament.json")
if not os.path.exists(metadata_rank_paths):
return {}
with open(metadata_rank_paths) as ranks_file:
results = json.load(ranks_file)
return results
def _prepare_category_to_task_abbr_to_details(self):
tasks_per_category = {}
for task in self.TASKS_METADATA:
task_category = self.TASKS_METADATA[task]["category"]
tasks_per_category.setdefault(task_category, list()).append(task)
category2abbreviation2name = {self.TASKS_CATEGORY_OVERALL: {}}
for category, tasks in tasks_per_category.items():
abbreviation2name = {
self.TASKS_METADATA[t]["abbreviation"]: (
self.TASKS_METADATA[t]["abbreviation"],
self.TASKS_METADATA[t]["name"],
self.TASKS_METADATA[t]["source_url"],
)
for t in tasks
}
sorted_abbreviation2name = dict.fromkeys(sorted(abbreviation2name.keys()))
sorted_abbreviation2name.update(abbreviation2name)
category2abbreviation2name[category] = sorted_abbreviation2name
category2abbreviation2name[self.TASKS_CATEGORY_OVERALL].update(sorted_abbreviation2name)
abbreviation2name = category2abbreviation2name[self.TASKS_CATEGORY_OVERALL]
sorted_abbreviation2name = dict.fromkeys(sorted(abbreviation2name.keys()))
sorted_abbreviation2name.update(abbreviation2name)
category2abbreviation2name[self.TASKS_CATEGORY_OVERALL] = sorted_abbreviation2name
category2abbreviation2name[self.TASKS_CATEGORY_OVERALL_DETAILS] = sorted_abbreviation2name
return category2abbreviation2name
def fetch_existing_models(self):
# Models data
submission_ids = set()
submission_id_to_file = {}
submission_id_to_model_title = {}
submission_id_to_data = {}
with self.results_dataset_local_snapshot_lock.ro:
for submission_file in glob.glob(os.path.join(self.results_dataset_local_snapshot, "data") + "/*.json"):
data = json.load(open(submission_file))
metadata = data.get("submission_metadata")
if metadata is None:
continue
submission_id = metadata["submission_id"]
submission_ids.add(submission_id)
submission_id_to_file[submission_id] = submission_file
submission_id_to_model_title[submission_id] = metadata["team_name"] + "/" + metadata["model_name"]
submission_id_to_data[submission_id] = {
"results": data["results"],
"metadata": data.get("metadata", {}),
"submission_metadata": metadata,
}
with self.var_lock.rw:
self.submission_ids = submission_ids
self.submission_id_to_file = submission_id_to_file
self.submission_id_to_model_title = submission_id_to_model_title
self.submission_id_to_data = submission_id_to_data
def results_dataset_integrity_check(self, solve=False):
"""
Zkontroluje, že:
- všechny modely byly v duelu se všemi
-- pokud ne, znemožní potvrzení nových submitů a udělá zbývající zápasy
-- kontroluje soubory v adresáři "/data" a soubor "tournament.json"
- v souboru "tournament.json" není `submission_id`, které by nemělo soubor v adresáři "/data"
- negeneruje soubor "tournament.json" celý znovu, ale pouze dopočítá co chybí
"""
while True:
with self.submit_lock(timeout=5) as acquired:
if acquired:
gr.Info('Checking integrity...', duration=15)
self._update_models_and_tournament_results()
with self.var_lock.ro:
# Is every `submission_id` in results known?
if self.tournament_results.keys() - self.submission_ids != set():
pass
# Was every `submission_id` in some match?
elif self.submission_ids - self.tournament_results.keys() != set():
pass
# Are all competitors known?
elif any(
self.tournament_results[submission_id].keys() - self.submission_ids != set()
for submission_id in self.submission_ids
):
pass
# Has had every `submission_id` match with all competitors?
elif any(
self.submission_ids - self.tournament_results[submission_id].keys() != set()
for submission_id in self.submission_ids
):
pass
else:
self.tournament_results_corrupted = False
break
if solve:
self.tournament_results_integrity_solving = True
self.tournament_results_integrity_solving_progress = 0
renew_tournament_began_datetime = datetime.now(timezone.utc)
datetime2str = lambda d: d.strftime("%Y-%m-%dT%H:%M:%S %Z")
print(f"Renew tournament began at {datetime2str(renew_tournament_began_datetime)}")
gr.Info('Running tournament...', duration=15)
with self.var_lock.rw:
submission_ids_for_renew_tournament = set()
submission_ids_not_known = self.tournament_results.keys() - self.submission_ids
submission_ids_not_in_tournament = self.submission_ids - self.tournament_results.keys()
submission_ids_for_renew_tournament |= submission_ids_not_in_tournament
for submission_id in submission_ids_not_known:
self.tournament_results.pop(submission_id)
for submission_id in self.submission_ids:
competitor_ids_not_known = self.tournament_results[submission_id].keys() - self.submission_ids
competitor_ids_not_in_tournament = self.submission_ids - self.tournament_results[submission_id].keys()
for competitor_id in competitor_ids_not_known:
self.tournament_results[submission_id].pop(competitor_id)
if competitor_ids_not_in_tournament:
submission_ids_for_renew_tournament.add(submission_id)
for i, submission_id in enumerate(submission_ids_for_renew_tournament):
self.tournament_results_integrity_solving_progress = i / len(submission_ids_for_renew_tournament)
with self.var_lock.ro:
file = self.submission_id_to_file[submission_id]
tournament_results = self.start_tournament(submission_id, file)
with self.var_lock.rw:
self.tournament_results = tournament_results
self.tournament_results_integrity_solving_progress = 1
renew_tournament_ended_datetime = datetime.now(timezone.utc)
print(f"Renew tournament ended at {datetime2str(renew_tournament_ended_datetime)}")
renew_tournament_ended_time_elapsed = renew_tournament_ended_datetime - renew_tournament_began_datetime
print(f"Time elapsed: {renew_tournament_ended_time_elapsed}")
gr.Info('Uploading tournament results...', duration=5)
if self.tournament_results:
self._upload_tournament_results(self.tournament_results)
self.tournament_results_integrity_solving = False
self.tournament_results_corrupted = False
else:
self.tournament_results_corrupted = True
break
gr.Info("Waiting in queue...", duration=5)
time.sleep(10)
gr.Info('Integrity of the results dataset is checked', duration=5)
@staticmethod
def _model_tournament_table_highlight_true_and_false(x):
df_css = x.copy()
for c in df_css:
for i in range(len(df_css.index)):
if x.loc[i, c] == True or ">true<" in str(x.loc[i, c]).lower():
df_css.loc[i, c] = 'background-color: rgba(0, 255, 0, 0.1);'
elif x.loc[i, c] == False or ">false<" in str(x.loc[i, c]).lower():
df_css.loc[i, c] = 'background-color: rgba(255, 0, 0, 0.1);'
else:
df_css.loc[i, c] = ''
return df_css
def get_model_tournament_table_csv(self, submission_id, category, pre_submit=None):
if pre_submit == None:
with self.var_lock.ro:
return self.tournament_dataframes_csv[submission_id][category]
else:
return self._dataframe_to_csv(
self._get_model_tournament_table(submission_id, category, pre_submit=pre_submit, to_csv=True),
f"Tournament table - pre-submit - {category}.csv",
)
def get_model_tournament_table(self, submission_id, category, pre_submit=None):
if pre_submit == None:
with self.var_lock.ro:
return copy.copy(self.tournament_dataframes[submission_id][category])
else:
return self._get_model_tournament_table(submission_id, category, pre_submit=pre_submit)
def _get_model_tournament_table(self, submission_id, category, pre_submit=None, to_csv=False):
model_tournament_table = []
with self.var_lock.ro:
tournament_results = pre_submit.tournament_results if pre_submit else self.tournament_results
for competitor_id in tournament_results[submission_id].keys() - {submission_id}: # without self
if competitor_id not in self.submission_id_to_data:
if pre_submit and competitor_id == pre_submit.submission_id:
data = pre_submit.data
else:
raise gr.Error(f"Internal error: Submission [{competitor_id}] not found")
else:
data = self.submission_id_to_data[competitor_id]
match_results = {}
for task in self.TASKS_METADATA:
task_category = self.TASKS_METADATA[task]["category"]
if category in (task_category, self.TASKS_CATEGORY_OVERALL, self.TASKS_CATEGORY_OVERALL_DETAILS):
if to_csv:
match_results[task] = tournament_results[submission_id][competitor_id][task]["significant"]
else:
match_task_result_details = dict.fromkeys(["significant", "p_value"]) # order has impact to sorting DataFrame
match_task_result_details.update(copy.deepcopy(tournament_results[submission_id][competitor_id][task]))
match_task_result_details["significant"] = str(match_task_result_details["significant"]).lower() # originaly bool
match_task_result_significant = match_task_result_details["significant"]
match_task_result_details = "\n".join(f"{k}: {v}" for k, v in match_task_result_details.items())
match_results[task] = f'<abbr title={xmlQuoteAttr(match_task_result_details)}>{match_task_result_significant}</abbr>'
model_link = data["submission_metadata"]["link_to_model"]
model_title = data["submission_metadata"]["team_name"] + "/" + data["submission_metadata"]["model_name"]
if to_csv:
match_results["model"] = model_title
match_results["link_to_model"] = model_link
else:
model_title_abbr_team_name = self.abbreviate(data["submission_metadata"]["team_name"], self.MAX_LENGTH_OF_MODEL_TITLE)
model_title_abbr_model_name = self.abbreviate(data["submission_metadata"]["model_name"], self.MAX_LENGTH_OF_MODEL_TITLE)
model_title_abbr_html = f'<div style="font-size: 10px;">{xmlAndMarkdownEscape(model_title_abbr_team_name)}</div>{xmlAndMarkdownEscape(model_title_abbr_model_name)}'
match_results["model"] = f'<a href={xmlQuoteAttr(model_link)} title={xmlQuoteAttr(model_title)}>{model_title_abbr_html}</a>'
model_tournament_table.append(match_results)
dataframe = pd.DataFrame.from_records(model_tournament_table)
extra_attributes_map_word_to_header = {
"model": "Competitor",
"link_to_model": "Link to model",
}
first_attributes = [
"model",
"link_to_model",
]
df_order = [
key
for key in dict.fromkeys(
first_attributes
+ sorted(
list(self.TASKS_METADATA.keys())
+ list(dataframe.columns)
)
).keys()
if key in dataframe.columns
]
dataframe = dataframe[df_order]
attributes_map_word_to_header = {key: value["abbreviation"] for key, value in self.TASKS_METADATA.items()}
attributes_map_word_to_header.update(extra_attributes_map_word_to_header)
dataframe = dataframe.rename(
columns=attributes_map_word_to_header
)
if not to_csv:
dataframe = dataframe.style.apply(self._model_tournament_table_highlight_true_and_false, axis=None)
return dataframe
def _dataframe_to_csv(self, dataframe, filename):
try:
if not os.path.isdir(self.DIR_DATAFRAMES_CSV):
os.mkdir(self.DIR_DATAFRAMES_CSV)
except FileExistsError:
pass
filepath = os.path.join(self.DIR_DATAFRAMES_CSV, filename)
dataframe.to_csv(filepath, index=False)
return filepath
def get_leaderboard_csv(self, pre_submit=None, category=None):
if pre_submit == None:
category = category if category else self.TASKS_CATEGORY_OVERALL
with self.var_lock.ro:
return self.leaderboard_dataframes_csv[category]
else:
return self._dataframe_to_csv(
self._get_leaderboard(pre_submit=pre_submit, category=category, to_csv=True),
f"Leaderboard - pre-submit - {category}.csv",
)
def get_leaderboard(self, pre_submit=None, category=None):
if pre_submit == None:
category = category if category else self.TASKS_CATEGORY_OVERALL
with self.var_lock.ro:
return copy.copy(self.leaderboard_dataframes[category])
else:
return self._get_leaderboard(pre_submit=pre_submit, category=category)
def _get_leaderboard(self, pre_submit=None, category=None, to_csv=False):
with self.var_lock.ro:
tournament_results = pre_submit.tournament_results if pre_submit else self.tournament_results
category = category if category else self.TASKS_CATEGORY_OVERALL
if len(tournament_results) == 0:
return pd.DataFrame(columns=['No submissions yet'])
else:
processed_results = []
for submission_id in tournament_results.keys():
if submission_id not in self.submission_id_to_data:
if pre_submit and submission_id == pre_submit.submission_id:
data = pre_submit.data
else:
raise gr.Error(f"Internal error: Submission [{submission_id}] not found")
else:
data = self.submission_id_to_data[submission_id]
if submission_id != data["submission_metadata"]["submission_id"]:
raise gr.Error(f"Proper submission [{submission_id}] not found")
local_results = {}
win_score = {}
visible_metrics_map_word_to_header = {}
for task in self.TASKS_METADATA.keys():
task_category = self.TASKS_METADATA[task]["category"]
if category not in (self.TASKS_CATEGORY_OVERALL, self.TASKS_CATEGORY_OVERALL_DETAILS, task_category):
continue
else:
# tournament_results
num_of_competitors = 0
num_of_wins = 0
for competitor_id in tournament_results[submission_id].keys() - {submission_id}: # without self
num_of_competitors += 1
if tournament_results[submission_id][competitor_id][task]["significant"]:
num_of_wins += 1
task_score = num_of_wins / num_of_competitors * 100 if num_of_competitors > 0 else 100
win_score.setdefault(task_category, []).append(task_score)
if category in (task_category, self.TASKS_CATEGORY_OVERALL_DETAILS):
local_results[task] = task_score
for metric in uniqifyList([self.TASKS_METADATA[task]["metric"]] + VISIBLE_METRICS):
visible_metrics_map_word_to_header[task + "_" + metric] = self.TASKS_METADATA[task]["abbreviation"] + " " + metric
metric_value = data['results'][task].get(metric)
if metric_value is not None:
local_results[task + "_" + metric] = metric_value if metric == "word_perplexity" else metric_value * 100
break # Only the first metric of every task
for c in win_score:
win_score[c] = sum(win_score[c]) / len(win_score[c])
if category in (self.TASKS_CATEGORY_OVERALL, self.TASKS_CATEGORY_OVERALL_DETAILS):
if category == self.TASKS_CATEGORY_OVERALL:
for c in win_score:
local_results[c] = win_score[c]
local_results["average_score"] = sum(win_score.values()) / len(win_score)
else:
local_results["average_score"] = win_score[category]
model_link = data["submission_metadata"]["link_to_model"]
model_title = data["submission_metadata"]["team_name"] + "/" + data["submission_metadata"]["model_name"]
if to_csv:
local_results["model"] = model_title
local_results["link_to_model"] = model_link
else:
model_title_abbr_team_name = self.abbreviate(data["submission_metadata"]["team_name"], self.MAX_LENGTH_OF_MODEL_TITLE)
model_title_abbr_model_name = self.abbreviate(data["submission_metadata"]["model_name"], self.MAX_LENGTH_OF_MODEL_TITLE)
model_title_abbr_html = f'<div style="font-size: 10px;">{xmlAndMarkdownEscape(model_title_abbr_team_name)}</div>{xmlAndMarkdownEscape(model_title_abbr_model_name)}'
local_results["model"] = f'<a href={xmlQuoteAttr(model_link)} title={xmlQuoteAttr(model_title)}>{model_title_abbr_html}</a>'
if to_csv:
n_shot = data["metadata"].get("n-shot", "")
local_results["n-shot"] = n_shot
release = data["submission_metadata"].get("submission_timestamp")
release = time.strftime("%Y-%m-%d", time.gmtime(release)) if release else "N/A"
local_results["release"] = release
local_results["model_type"] = data["submission_metadata"]["model_type"]
local_results["parameters"] = data["submission_metadata"]["parameters"]
if pre_submit and submission_id == pre_submit.submission_id:
processed_results.insert(0, local_results)
else:
processed_results.append(local_results)
dataframe = pd.DataFrame.from_records(processed_results)
extra_attributes_map_word_to_header = {
"model": "Model",
"release": "Submitted",
"average_score": "Average ⬆️",
"team_name": "Team name",
"model_name": "Model name",
"model_type": "Type",
"parameters": "# θ (B)",
"input_length": "Input length (# tokens)",
"precision": "Precision",
"description": "Description",
"link_to_model": "Link to model",
}
first_attributes = [
"model",
"link_to_model",
"release",
"model_type",
"parameters",
"n-shot",
"average_score",
]
df_order = [
key
for key in dict.fromkeys(
first_attributes
+ sorted(
list(self.TASKS_METADATA.keys())
+ list(dataframe.columns)
)
).keys()
if key in dataframe.columns
]
# Sort columns
dataframe = dataframe[df_order]
# Sort rows
if pre_submit:
first_row_with_pre_submit = dataframe.iloc[0]
dataframe = dataframe.iloc[1:].sort_values(by=["average_score"], ascending=False)
dataframe = pd.concat([first_row_with_pre_submit.to_frame().T, dataframe])
else:
dataframe = dataframe.sort_values(by=["average_score"], ascending=False)
# Rename columns
attributes_map_word_to_header = {key: value["abbreviation"] for key, value in self.TASKS_METADATA.items()}
attributes_map_word_to_header.update(extra_attributes_map_word_to_header)
attributes_map_word_to_header.update(visible_metrics_map_word_to_header)
dataframe = dataframe.rename(
columns=attributes_map_word_to_header
)
return dataframe
def fake_tournament(self, new_submission_id, new_model_file):
DRAW_MATCH = {
task: {
"significant": False,
"p_value": 0.5,
"delta": 0.0,
"fake": True,
}
for task in self.TASKS_METADATA.keys()
}
with self.var_lock.ro:
new_tournament = copy.deepcopy(self.tournament_results)
pre_submit = self.pre_submit.get(new_submission_id)
if pre_submit:
new_tournament[new_submission_id] = pre_submit.tournament_results[new_submission_id]
for competitor_id in pre_submit.tournament_results[new_submission_id].keys() - {new_submission_id}:
new_tournament[competitor_id][new_submission_id] = pre_submit.tournament_results[competitor_id][new_submission_id]
if new_submission_id not in new_tournament:
new_tournament[new_submission_id] = {}
new_tournament[new_submission_id][new_submission_id] = copy.deepcopy(DRAW_MATCH)
competitor_ids_in_tournament = new_tournament[new_submission_id].keys()
rest_of_competitors = list(self.submission_ids - {new_submission_id} - competitor_ids_in_tournament) # without self and without the opponents with which it has already contended
for competitor_id in rest_of_competitors:
new_tournament[new_submission_id][competitor_id] = copy.deepcopy(DRAW_MATCH)
new_tournament[competitor_id][new_submission_id] = copy.deepcopy(DRAW_MATCH)
return new_tournament
def start_tournament(self, new_submission_id, new_model_file):
with self.var_lock.ro:
new_tournament = copy.deepcopy(self.tournament_results)
pre_submit = self.pre_submit.get(new_submission_id)
if pre_submit:
new_tournament[new_submission_id] = pre_submit.tournament_results[new_submission_id]
for competitor_id in pre_submit.tournament_results[new_submission_id].keys() - {new_submission_id}:
new_tournament[competitor_id][new_submission_id] = pre_submit.tournament_results[competitor_id][new_submission_id]
if new_submission_id not in new_tournament:
new_tournament[new_submission_id] = {}
new_tournament[new_submission_id][new_submission_id] = {
task: {
"significant": False,
"p_value": 0.5,
"delta": 0.0,
}
for task in self.TASKS_METADATA.keys()
}
competitor_ids_in_tournament = new_tournament[new_submission_id].keys()
rest_of_competitors = list(self.submission_ids - {new_submission_id} - competitor_ids_in_tournament) # without self and without the opponents with which it has already contended
num_of_competitors = len(rest_of_competitors)
result_url = {}
result_inverse_url = {}
while rest_of_competitors:
next_competitors = []
while rest_of_competitors:
if len(next_competitors) < 5: # 5*2==10 tasks
next_competitors.append(rest_of_competitors.pop())
else:
break
for competitor_id in next_competitors:
result_url[competitor_id] = check_significance_send_task(new_model_file, self.submission_id_to_file[competitor_id])
result_inverse_url[competitor_id] = check_significance_send_task(self.submission_id_to_file[competitor_id], new_model_file)
while next_competitors:
competitor_id = next_competitors.pop(0)
result = check_significance_wait_for_result(result_url.pop(competitor_id))
result_inverse = check_significance_wait_for_result(result_inverse_url.pop(competitor_id))
if rest_of_competitors:
new_competitor_id = rest_of_competitors.pop()
next_competitors.append(new_competitor_id)
result_url[new_competitor_id] = check_significance_send_task(new_model_file, self.submission_id_to_file[new_competitor_id])
result_inverse_url[new_competitor_id] = check_significance_send_task(self.submission_id_to_file[new_competitor_id], new_model_file)
new_tournament[new_submission_id][competitor_id] = result
new_tournament[competitor_id][new_submission_id] = result_inverse
num_of_competitors_done = num_of_competitors - len(next_competitors) - len(rest_of_competitors)
gr.Info(f"Tournament: {num_of_competitors_done}/{num_of_competitors} = {(num_of_competitors_done) * 100 // num_of_competitors}% done")
return new_tournament
@staticmethod
def abbreviate(s, max_length, dots_place="center"):
if len(s) <= max_length:
return s
else:
if max_length <= 1:
return "…"
elif dots_place == "begin":
return "…" + s[-max_length + 1:].lstrip()
elif dots_place == "center" and max_length >= 3:
max_length_begin = max_length // 2
max_length_end = max_length - max_length_begin - 1
return s[:max_length_begin].rstrip() + "…" + s[-max_length_end:].lstrip()
else: # dots_place == "end"
return s[:max_length - 1].rstrip() + "…"
@staticmethod
def create_submission_id(metadata):
# Délka ID musí být omezena, protože se používá v názvu souboru
submission_id = "_".join([metadata[key][:7] for key in (
"team_name",
"model_name",
"model_predictions_sha256",
"model_results_sha256",
)])
submission_id = submission_id.replace("/", "_").replace("\n", "_").strip()
return submission_id
@staticmethod
def get_sha256_hexdigest(obj):
data = json.dumps(
obj,
separators=(',', ':'),
sort_keys=True,
ensure_ascii=True,
).encode()
result = hashlib.sha256(data).hexdigest()
return result
PreSubmit = namedtuple('PreSubmit', 'tournament_results, submission_id, file, data')
def prepare_model_for_submission(self, file, metadata) -> PreSubmit:
with open(file, "r") as f:
data = json.load(f)
data["submission_metadata"] = metadata
metadata["model_predictions_sha256"] = self.get_sha256_hexdigest(data["predictions"])
metadata["model_results_sha256"] = self.get_sha256_hexdigest(data["results"])
submission_id = self.create_submission_id(metadata)
metadata["submission_id"] = submission_id
metadata["submission_timestamp"] = time.time() # timestamp
with open(file, "w") as f:
json.dump(data, f, separators=(',', ':')) # compact JSON
return self._prepare_model_for_submission(file, data=data, do_submit=False)
def save_model_submission(self, file, data=None) -> PreSubmit:
return self._prepare_model_for_submission(file, data=data, do_submit=True)
def _prepare_model_for_submission(self, file, data=None, do_submit=False) -> PreSubmit:
with open(file, "r") as f:
if not data:
data = json.load(f)
submission_id = data["submission_metadata"]["submission_id"]
while True:
submit_lock = self.submit_lock if do_submit else NoneLock()
with submit_lock(timeout=5) as acquired:
if acquired:
info_msg = 'Running tournament...'
gr.Info(info_msg, duration=40)
if do_submit:
print(f"Locked `submit_lock` for {submission_id = }")
print(info_msg)
self.update_leaderboard()
if HF_FAKE_TOURNAMENT:
tournament_results = self.fake_tournament(submission_id, file)
else:
tournament_results = self.start_tournament(submission_id, file)
pre_submit = self.PreSubmit(
tournament_results,
submission_id,
file,
{
"results": data["results"],
"metadata": data.get("metadata", {}),
"submission_metadata": data["submission_metadata"],
}
)
self.pre_submit[submission_id] = pre_submit
info_msg = 'Tournament finished!'
gr.Info(info_msg, duration=2)
if do_submit:
print(info_msg)
gr.Info("Uploading…", duration=40)
self._upload_submission(pre_submit.submission_id, pre_submit.file)
self._upload_tournament_results(pre_submit.tournament_results)
self.update_leaderboard()
self._upload_submission_id_to_model_title() # need to be after update_leaderboard()
print(f"Unlocked `submit_lock` for {submission_id = }")
break
gr.Info("Waiting in queue...", duration=5)
time.sleep(10)
return pre_submit
def _upload_submission_id_to_model_title(self):
# Temporary save tournament results
with self.results_dataset_local_snapshot_lock.rw:
submission_id_to_model_title_path = os.path.join(self.results_dataset_local_snapshot, "submission_id_to_model_title.json")
with open(submission_id_to_model_title_path, "w") as f:
json.dump(self.submission_id_to_model_title, f, sort_keys=True, indent=2) # readable JSON
api.upload_file(
path_or_fileobj=submission_id_to_model_title_path,
path_in_repo="submission_id_to_model_title.json",
repo_id=self.SERVER_ADDRESS,
repo_type=self.REPO_TYPE,
token=HF_TOKEN,
)
def _upload_submission(self, submission_id, file):
api.upload_file(
path_or_fileobj=file,
path_in_repo=f"data/{submission_id}.json",
repo_id=self.SERVER_ADDRESS,
repo_type=self.REPO_TYPE,
token=HF_TOKEN,
)
def _upload_tournament_results(self, tournament_results):
# Temporary save tournament results
with self.results_dataset_local_snapshot_lock.rw:
tournament_results_path = os.path.join(self.results_dataset_local_snapshot, "tournament.json")
with open(tournament_results_path, "w") as f:
json.dump(tournament_results, f, sort_keys=True, indent=2) # readable JSON
api.upload_file(
path_or_fileobj=tournament_results_path,
path_in_repo="tournament.json",
repo_id=self.SERVER_ADDRESS,
repo_type=self.REPO_TYPE,
token=HF_TOKEN,
)
def get_model_detail(self, submission_id):
with self.var_lock.ro:
if submission_id not in self.submission_id_to_data:
raise gr.Error(f"Submission [{submission_id}] not found")
else:
data = self.submission_id_to_data[submission_id]
return data["submission_metadata"]
|