Spaces:
Running
Running
File size: 15,601 Bytes
b66f230 48c616c b35e51f e576387 23ee797 658f16d f3684c5 b66f230 23ee797 23931c3 b66f230 83bc9f9 b66f230 ff6fff7 23ee797 6362604 23ee797 822c3a6 23ee797 b66f230 219886f b35e51f c93b288 f46c803 b66f230 219886f b66f230 b35e51f b66f230 b35e51f b66f230 b35e51f b66f230 1b0a7e3 658f16d 1b0a7e3 b66f230 658f16d b66f230 23931c3 658f16d b35e51f b66f230 658f16d b66f230 b35e51f b66f230 b35e51f b66f230 23931c3 f0196fa 33e78e2 23931c3 658f16d f0196fa 1b0a7e3 f0196fa 6845288 11d85cb f0196fa 11d85cb f0196fa 8f5a802 f0196fa 1b0a7e3 f0196fa 07329a3 f0196fa 52f1ee8 fd7c00b ff6fff7 e576387 f0196fa 658f16d 23931c3 b66f230 23931c3 e576387 fb91218 e576387 0cd1497 76b7a19 e576387 fb91218 e576387 88fe528 b66f230 e576387 33e78e2 219886f e576387 219886f b66f230 b35e51f b66f230 b35e51f 219886f 23ee797 135b042 23ee797 658f16d b66f230 658f16d b66f230 52f1ee8 090213e 52f1ee8 7474e5d 52f1ee8 090213e 52f1ee8 090213e 52f1ee8 b35e51f 658f16d b35e51f d8f2525 b35e51f 658f16d b66f230 b35e51f b66f230 b35e51f e576387 b66f230 219886f b35e51f 658f16d b66f230 b35e51f b66f230 b35e51f b66f230 219886f b66f230 23931c3 b35e51f 23931c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
import copy
import glob
import json
import os
os.environ["REQUESTS_CA_BUNDLE"] = "/etc/ssl/certs/ca-certificates.crt" # Necessary for `requests`. Without set correct path or empty string it fails during process HTTPS connection with this: [Errno 101] Network is unreachable
import hashlib
import time
import requests
from collections import namedtuple
from xml.sax.saxutils import escape as xmlEscape, quoteattr as xmlQuoteAttr
import gradio as gr
import pandas as pd
from huggingface_hub import HfApi, snapshot_download
from compare_significance import SUPPORTED_METRICS
VISIBLE_METRICS = SUPPORTED_METRICS + ["macro_f1"]
api = HfApi()
ORG = "xdolez52"
REPO = f"{ORG}/LLM_benchmark_data"
HF_TOKEN = os.environ.get("HF_TOKEN")
TASKS_METADATA_PATH = "./tasks_metadata.json"
MARKDOWN_SPECIAL_CHARACTERS = {
"#": "#", # for usage in xml.sax.saxutils.escape as entities must be first
"\\": "\",
"`": "`",
"*": "*",
"_": "_",
"{": "{",
"}": "}",
"[": "[",
"]": "]",
"(": "(",
")": ")",
"+": "+",
"-": "-",
".": ".",
"!": "!",
"=": "=",
"|": "|"
}
def check_significance_send_task(model_a_path, model_b_path):
url = 'https://czechllm.fit.vutbr.cz/benczechmark-leaderboard/compare_significance/'
# prepare and send request
with (
open(model_a_path, 'rb') as model_a_fp,
open(model_b_path, 'rb') as model_b_fp,
):
files = {
'model_a': model_a_fp,
'model_b': model_b_fp,
}
response = requests.post(url, files=files)
# check response
if response.status_code == 202:
result_url = response.url
#task_id = response.json()['task_id']
elif response.status_code == 429:
raise RuntimeError('Server is too busy. Please try again later.') # TODO: try-except do raise gr.error
else:
raise RuntimeError(f'Failed to submit task. Status code: {response.status_code}') # TODO: try-except do raise gr.error
return result_url
def check_significance_wait_for_result(result_url):
while True:
response = requests.get(result_url)
if response.status_code == 200:
result = response.json()
break
elif response.status_code == 202:
time.sleep(5)
else:
raise RuntimeError(f'Failed to get result. Status code: {response.status_code}') # TODO: try-except do raise gr.error
if result["state"] == "COMPLETED":
return result['result']
else:
raise RuntimeError(result['result']['error'])
def check_significance(model_a_path, model_b_path):
result_url = check_significance_send_task(model_a_path, model_b_path)
result = check_significance_wait_for_result(result_url)
return result
class LeaderboardServer:
def __init__(self):
self.server_address = REPO
self.repo_type = "dataset"
self.local_leaderboard = snapshot_download(
self.server_address,
repo_type=self.repo_type,
token=HF_TOKEN,
local_dir="./",
)
self.submission_id_to_file = {} # Map submission ids to file paths
self.tasks_metadata = json.load(open(TASKS_METADATA_PATH))
self.tasks_categories = {self.tasks_metadata[task]["category"] for task in self.tasks_metadata}
self.tasks_category_overall = "Overall"
self.submission_ids = set()
self.fetch_existing_models()
self.tournament_results = self.load_tournament_results()
self.pre_submit = None
def update_leaderboard(self):
self.local_leaderboard = snapshot_download(
self.server_address,
repo_type=self.repo_type,
token=HF_TOKEN,
local_dir="./",
)
self.fetch_existing_models()
self.tournament_results = self.load_tournament_results()
def load_tournament_results(self):
metadata_rank_paths = os.path.join(self.local_leaderboard, "tournament.json")
if not os.path.exists(metadata_rank_paths):
return {}
with open(metadata_rank_paths) as ranks_file:
results = json.load(ranks_file)
return results
def fetch_existing_models(self):
# Models data
for submission_file in glob.glob(os.path.join(self.local_leaderboard, "data") + "/*.json"):
data = json.load(open(submission_file))
metadata = data.get('metadata')
if metadata is None:
continue
submission_id = metadata["submission_id"]
self.submission_ids.add(submission_id)
self.submission_id_to_file[submission_id] = submission_file
def get_leaderboard(self, tournament_results=None, category=None):
tournament_results = tournament_results if tournament_results else self.tournament_results
category = category if category else self.tasks_category_overall
if len(tournament_results) == 0:
return pd.DataFrame(columns=['No submissions yet'])
else:
processed_results = []
for submission_id in tournament_results.keys():
path = self.submission_id_to_file.get(submission_id)
if path is None:
if self.pre_submit and submission_id == self.pre_submit.submission_id:
data = json.load(open(self.pre_submit.file))
else:
raise gr.Error(f"Internal error: Submission [{submission_id}] not found")
elif path:
data = json.load(open(path))
else:
raise gr.Error(f"Submission [{submission_id}] not found")
if submission_id != data["metadata"]["submission_id"]:
raise gr.Error(f"Proper submission [{submission_id}] not found")
local_results = {}
win_score = {}
visible_metrics_map_word_to_header = {}
for task in self.tasks_metadata.keys():
task_category = self.tasks_metadata[task]["category"]
if category not in (self.tasks_category_overall, task_category):
continue
else:
# tournament_results
num_of_competitors = 0
num_of_wins = 0
for competitor_id in tournament_results[submission_id].keys() - {submission_id}: # without self
num_of_competitors += 1
if tournament_results[submission_id][competitor_id][task]:
num_of_wins += 1
task_score = num_of_wins / num_of_competitors * 100 if num_of_competitors > 0 else 100
win_score.setdefault(task_category, []).append(task_score)
if category == task_category:
local_results[task] = task_score
for metric in VISIBLE_METRICS:
visible_metrics_map_word_to_header[task + "_" + metric] = self.tasks_metadata[task]["abbreviation"] + " " + metric
metric_value = data['results'][task].get(metric)
if metric_value is not None:
local_results[task + "_" + metric] = metric_value * 100
break # Only the first metric of every task
for c in win_score:
win_score[c] = sum(win_score[c]) / len(win_score[c])
if category == self.tasks_category_overall:
for c in win_score:
local_results[c] = win_score[c]
local_results["average_score"] = sum(win_score.values()) / len(win_score)
else:
local_results["average_score"] = win_score[category]
model_link = data["metadata"]["link_to_model"]
model_title = data["metadata"]["team_name"] + "/" + data["metadata"]["model_name"]
model_title_abbr = self.abbreviate(data["metadata"]["team_name"], 14) + "/" + self.abbreviate(data["metadata"]["model_name"], 14)
local_results["model"] = f'<a href={xmlQuoteAttr(model_link)} title={xmlQuoteAttr(model_title)}>{xmlEscape(model_title_abbr, MARKDOWN_SPECIAL_CHARACTERS)}</a>'
release = data["metadata"].get("submission_timestamp")
release = time.strftime("%Y-%m-%d", time.gmtime(release)) if release else "N/A"
local_results["release"] = release
local_results["model_type"] = data["metadata"]["model_type"]
local_results["parameters"] = data["metadata"]["parameters"]
if self.pre_submit and submission_id == self.pre_submit.submission_id:
processed_results.insert(0, local_results)
else:
processed_results.append(local_results)
dataframe = pd.DataFrame.from_records(processed_results)
extra_attributes_map_word_to_header = {
"model": "Model",
"release": "Release",
"average_score": "Average ⬆️",
"team_name": "Team name",
"model_name": "Model name",
"model_type": "Type",
"parameters": "# θ (B)",
"input_length": "Input length (# tokens)",
"precision": "Precision",
"description": "Description",
"link_to_model": "Link to model"
}
first_attributes = [
"model",
"release",
"model_type",
"parameters",
"average_score",
]
df_order = [
key
for key in dict.fromkeys(
first_attributes
+ list(self.tasks_metadata.keys())
+ list(dataframe.columns)
).keys()
if key in dataframe.columns
]
dataframe = dataframe[df_order]
attributes_map_word_to_header = {key: value["abbreviation"] for key, value in self.tasks_metadata.items()}
attributes_map_word_to_header.update(extra_attributes_map_word_to_header)
attributes_map_word_to_header.update(visible_metrics_map_word_to_header)
dataframe = dataframe.rename(
columns=attributes_map_word_to_header
)
return dataframe
def start_tournament(self, new_submission_id, new_model_file):
new_tournament = copy.deepcopy(self.tournament_results)
new_tournament[new_submission_id] = {}
new_tournament[new_submission_id][new_submission_id] = {
task: False for task in self.tasks_metadata.keys()
}
for competitor_id in self.submission_ids - {new_submission_id}: # without self
res = check_significance_send_task(new_model_file, self.submission_id_to_file[competitor_id])
res_inverse = check_significance_send_task(self.submission_id_to_file[competitor_id], new_model_file)
res = check_significance_wait_for_result(res)
res_inverse = check_significance_wait_for_result(res_inverse)
new_tournament[new_submission_id][competitor_id] = {
task: data["significant"] for task, data in res.items()
}
new_tournament[competitor_id][new_submission_id] = {
task: data["significant"] for task, data in res_inverse.items()
}
return new_tournament
@staticmethod
def abbreviate(s, max_length, dots_place="center"):
if len(s) <= max_length:
return s
else:
if max_length <= 1:
return "…"
elif dots_place == "begin":
return "…" + s[-max_length + 1:].lstrip()
elif dots_place == "center" and max_length >= 3:
max_length_begin = max_length // 2
max_length_end = max_length - max_length_begin - 1
return s[:max_length_begin].rstrip() + "…" + s[-max_length_end:].lstrip()
else: # dots_place == "end"
return s[:max_length - 1].rstrip() + "…"
@staticmethod
def create_submission_id(metadata):
# Délka ID musí být omezena, protože se používá v názvu souboru
submission_id = "_".join([metadata[key][:7] for key in (
"team_name",
"model_name",
"model_predictions_sha256",
"model_results_sha256",
)])
submission_id = submission_id.replace("/", "_").replace("\n", "_").strip()
return submission_id
@staticmethod
def get_sha256_hexdigest(obj):
data = json.dumps(
obj,
separators=(',', ':'),
sort_keys=True,
ensure_ascii=True,
).encode()
result = hashlib.sha256(data).hexdigest()
return result
PreSubmit = namedtuple('PreSubmit', 'tournament_results, submission_id, file')
def prepare_model_for_submission(self, file, metadata) -> None:
with open(file, "r") as f:
data = json.load(f)
data["metadata"] = metadata
metadata["model_predictions_sha256"] = self.get_sha256_hexdigest(data["predictions"])
metadata["model_results_sha256"] = self.get_sha256_hexdigest(data["results"])
submission_id = self.create_submission_id(metadata)
metadata["submission_id"] = submission_id
metadata["submission_timestamp"] = time.time() # timestamp
with open(file, "w") as f:
json.dump(data, f, separators=(',', ':')) # compact JSON
tournament_results = self.start_tournament(submission_id, file)
self.pre_submit = self.PreSubmit(tournament_results, submission_id, file)
def save_pre_submit(self):
if self.pre_submit:
tournament_results, submission_id, file = self.pre_submit
api.upload_file(
path_or_fileobj=file,
path_in_repo=f"data/{submission_id}.json",
repo_id=self.server_address,
repo_type=self.repo_type,
token=HF_TOKEN,
)
# Temporary save tournament results
tournament_results_path = os.path.join(self.local_leaderboard, "tournament.json")
with open(tournament_results_path, "w") as f:
json.dump(tournament_results, f, sort_keys=True, indent=2) # readable JSON
api.upload_file(
path_or_fileobj=tournament_results_path,
path_in_repo="tournament.json",
repo_id=self.server_address,
repo_type=self.repo_type,
token=HF_TOKEN,
)
def get_model_detail(self, submission_id):
path = self.submission_id_to_file.get(submission_id)
if path is None:
raise gr.Error(f"Submission [{submission_id}] not found")
data = json.load(open(path))
return data["metadata"]
|