Spaces:
Running
Running
File size: 28,523 Bytes
b66f230 8e9c817 b35e51f e576387 23ee797 658f16d f3684c5 97092f5 b66f230 23ee797 23931c3 b66f230 cc5fdd9 b66f230 ff6fff7 23ee797 6362604 23ee797 3860f94 23ee797 3860f94 23ee797 822c3a6 23ee797 97092f5 ec6e1e5 b66f230 219886f ec6e1e5 bc7f740 ec6e1e5 b66f230 ec6e1e5 1c921ec 8bfc448 b66f230 ec6e1e5 97092f5 b66f230 6656d82 b66f230 219886f b66f230 ec6e1e5 b66f230 bc7f740 d0e7a00 bc7f740 b66f230 b35e51f b66f230 b35e51f ec6e1e5 1c921ec 8bfc448 b66f230 f03ebc5 f69c211 61e97bd f69c211 61e97bd f69c211 4123571 f69c211 4123571 f69c211 4123571 b66f230 edb55ca 188002f 39ce08a 3bf4a90 39ce08a 3bf4a90 39ce08a a425d37 8c3991f 8bfc448 2ddb0f5 5409a8a 8c3991f 7e24376 78879a4 bf47515 3bf4a90 8c3991f 2ddb0f5 8c3991f 2ddb0f5 8c3991f 2ddb0f5 8c3991f 188002f 8c3991f 97092f5 ec6e1e5 b66f230 ec6e1e5 8bfc448 ec6e1e5 b66f230 8bfc448 658f16d ec6e1e5 f0196fa ec6e1e5 78879a4 ec6e1e5 7bc6ac3 ec6e1e5 f0196fa ec6e1e5 a0fa84e ec6e1e5 f0196fa ec6e1e5 2be8bdf ec6e1e5 b66f230 b35e51f ec6e1e5 23ee797 ec6e1e5 23ee797 ec6e1e5 91b9cf7 ec6e1e5 6196b87 ec6e1e5 78879a4 ec6e1e5 b176fe0 b66f230 52f1ee8 090213e 52f1ee8 7474e5d 52f1ee8 090213e 52f1ee8 090213e 52f1ee8 b35e51f 658f16d b35e51f d8f2525 b35e51f 658f16d 97092f5 b66f230 b35e51f b66f230 b35e51f e576387 b66f230 219886f b35e51f 97092f5 b176fe0 f6916e3 97092f5 b176fe0 97092f5 b66f230 97092f5 3d0b427 97092f5 23931c3 3d0b427 23931c3 8bfc448 23931c3 8bfc448 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 |
import copy
import glob
import json
import os
# Necessary for `requests`. Without set correct path or empty string it fails during process HTTPS connection with this: [Errno 101] Network is unreachable
if os.path.exists("/etc/ssl/certs/ca-certificates.crt"):
os.environ["CURL_CA_BUNDLE"] = "/etc/ssl/certs/ca-certificates.crt"
os.environ["REQUESTS_CA_BUNDLE"] = "/etc/ssl/certs/ca-certificates.crt"
else:
os.environ["CURL_CA_BUNDLE"] = ""
os.environ["REQUESTS_CA_BUNDLE"] = ""
print(f"{os.environ.get('CURL_CA_BUNDLE') = }")
print(f"{os.environ.get('REQUESTS_CA_BUNDLE') = }")
import hashlib
import time
import requests
from collections import namedtuple
from xml.sax.saxutils import escape as xmlEscape, quoteattr as xmlQuoteAttr
from threading import Lock
import gradio as gr
import pandas as pd
from huggingface_hub import HfApi, snapshot_download
from compare_significance import SUPPORTED_METRICS
VISIBLE_METRICS = SUPPORTED_METRICS + ["macro_f1"]
api = HfApi()
ORG = "CZLC"
REPO = f"{ORG}/LLM_benchmark_data"
HF_TOKEN = os.environ.get("HF_TOKEN")
TASKS_METADATA_PATH = "./tasks_metadata.json"
MARKDOWN_SPECIAL_CHARACTERS = {
"#": "#", # for usage in xml.sax.saxutils.escape as entities must be first
"\\": "\",
"`": "`",
"*": "*",
"_": "_",
"{": "{",
"}": "}",
"[": "[",
"]": "]",
"(": "(",
")": ")",
"+": "+",
"-": "-",
".": ".",
"!": "!",
"=": "=",
"|": "|"
}
def check_significance_send_task(model_a_path, model_b_path):
url = 'https://czechllm.fit.vutbr.cz/benczechmark-leaderboard/compare_significance/'
# prepare and send request
with (
open(model_a_path, 'rb') as model_a_fp,
open(model_b_path, 'rb') as model_b_fp,
):
files = {
'model_a': model_a_fp,
'model_b': model_b_fp,
}
response = requests.post(url, files=files, timeout=60 * 5)
# check response
if response.status_code == 202:
result_url = response.url
#task_id = response.json()['task_id']
elif response.status_code == 429:
raise RuntimeError('Server is too busy. Please try again later.') # TODO: try-except do raise gr.error
else:
raise RuntimeError(f'Failed to submit task. Status code: {response.status_code}') # TODO: try-except do raise gr.error
return result_url
def check_significance_wait_for_result(result_url):
while True:
response = requests.get(result_url, timeout=60 * 5)
if response.status_code == 200:
result = response.json()
break
elif response.status_code == 202:
time.sleep(5)
else:
raise RuntimeError(f'Failed to get result. Status code: {response.status_code}') # TODO: try-except do raise gr.error
if result["state"] == "COMPLETED":
return result['result']
else:
raise RuntimeError(result['result']['error'])
def check_significance(model_a_path, model_b_path):
result_url = check_significance_send_task(model_a_path, model_b_path)
result = check_significance_wait_for_result(result_url)
return result
pre_submit_lock = Lock()
class _ReadLock:
def __init__(self, lock):
self._lock = lock
self.reading = 0
def __enter__(self):
with self._lock:
self.reading += 1
def __exit__(self, exc_type, exc_value, traceback):
with self._lock:
self.reading -= 1
class ReadWriteLock:
"""
Zámek, který ověří, že nikdo nečte když se zapisuje a že zapisuje pouze jeden
"""
def __init__(self):
self._lock = Lock()
self.ro = _ReadLock(self._lock)
self.rw = self
def __enter__(self):
self._lock.acquire()
while True:
reading = self.ro.reading
if reading > 0:
self._lock.release()
time.sleep(1)
self._lock.acquire()
elif reading < 0:
self._lock.release()
raise RuntimeError()
else:
return
def __exit__(self, exc_type, exc_value, traceback):
self._lock.release()
class LeaderboardServer:
def __init__(self):
self.server_address = REPO
self.repo_type = "dataset"
self.local_leaderboard = snapshot_download(
self.server_address,
repo_type=self.repo_type,
token=HF_TOKEN,
local_dir="./",
)
self.TASKS_METADATA = json.load(open(TASKS_METADATA_PATH))
self.TASKS_CATEGORIES = {self.TASKS_METADATA[task]["category"] for task in self.TASKS_METADATA}
self.TASKS_CATEGORY_OVERALL = "Overall"
self.CATEGORY_TO_TASK_ABBREVIATION_TO_NAME = self._prepare_category_to_task_abbr_to_name()
self.var_lock = ReadWriteLock()
self.submission_ids = set()
self.submission_id_to_file = {} # Map submission ids to file paths
self.submission_id_to_model_title = {}
self.submission_id_to_data = {} # Only data (results and metadata) using by leaderboard
self.fetch_existing_models()
self.tournament_results = self.load_tournament_results()
self.pre_submit_lock = pre_submit_lock
self.pre_submit = None
self.results_dataset_integrity_check() # Check integrity of the results dataset after (re)start Hugging Face Space
def update_leaderboard(self):
self.local_leaderboard = snapshot_download(
self.server_address,
repo_type=self.repo_type,
token=HF_TOKEN,
local_dir="./",
)
self.fetch_existing_models()
with self.var_lock.rw:
self.tournament_results = self.load_tournament_results()
def load_tournament_results(self):
metadata_rank_paths = os.path.join(self.local_leaderboard, "tournament.json")
if not os.path.exists(metadata_rank_paths):
return {}
with open(metadata_rank_paths) as ranks_file:
results = json.load(ranks_file)
return results
def _prepare_category_to_task_abbr_to_name(self):
tasks_per_category = {}
for task in self.TASKS_METADATA:
task_category = self.TASKS_METADATA[task]["category"]
tasks_per_category.setdefault(task_category, list()).append(task)
category2abbreviation2name = {}
for category, tasks in tasks_per_category.items():
abbreviation2name = {self.TASKS_METADATA[t]["abbreviation"]: self.TASKS_METADATA[t]["name"] for t in tasks}
sorted_abbreviation2name = dict.fromkeys(sorted(abbreviation2name.keys()))
sorted_abbreviation2name.update(abbreviation2name)
category2abbreviation2name[category] = sorted_abbreviation2name
return category2abbreviation2name
def fetch_existing_models(self):
# Models data
for submission_file in glob.glob(os.path.join(self.local_leaderboard, "data") + "/*.json"):
data = json.load(open(submission_file))
metadata = data.get('metadata')
if metadata is None:
continue
submission_id = metadata["submission_id"]
with self.var_lock.rw:
self.submission_ids.add(submission_id)
self.submission_id_to_file[submission_id] = submission_file
self.submission_id_to_model_title[submission_id] = metadata["team_name"] + "/" + metadata["model_name"]
self.submission_id_to_data[submission_id] = {"results": data["results"], "metadata": metadata}
def results_dataset_integrity_check(self):
"""
Zkontroluje, že:
- všechny modely byly v duelu se všemi
-- pokud ne, znemožní potvrzení nových submitů a udělá zbývající zápasy
-- kontroluje soubory v adresáři "/data" a soubor "tournament.json"
- v souboru "tournament.json" není `submission_id`, které by nemělo soubor v adresáři "/data"
"""
while True:
with self.pre_submit_lock:
if self.pre_submit == None:
gr.Info('Checking integrity...', duration=15)
self.update_leaderboard()
with self.var_lock.ro:
# Is every `submission_id` in results known?
if self.tournament_results.keys() - self.submission_ids != set():
pass
# Was every `submission_id` in some match?
elif self.submission_ids - self.tournament_results.keys() != set():
pass
# Are all competitors known?
elif any(
self.tournament_results[submission_id].keys() - self.submission_ids != set()
for submission_id in self.submission_ids
):
pass
# Has had every `submission_id` match with all competitors?
elif any(
self.submission_ids - self.tournament_results[submission_id].keys() != set()
for submission_id in self.submission_ids
):
pass
else:
break
gr.Info('Running tournament...', duration=15)
with self.var_lock.rw:
self.tournament_results = {}
submission_ids_backup = self.submission_ids
self.submission_ids = set()
for submission_id in submission_ids_backup:
with self.var_lock.ro:
file = self.submission_id_to_file[submission_id]
tournament_results = self.start_tournament(submission_id, file)
with self.var_lock.rw:
self.tournament_results = tournament_results
self.submission_ids.add(submission_id)
gr.Info('Uploading tournament results...', duration=5)
if self.tournament_results:
self._upload_tournament_results(self.tournament_results)
break
gr.Info("Waiting in queue...", duration=5)
time.sleep(10)
gr.Info('Integrity of the results dataset is checked', duration=5)
@staticmethod
def _model_tournament_table_highlight_true_and_false(x):
df_css = x.copy()
for c in df_css:
for i in range(len(df_css.index)):
if x[c].iloc[i] == True or ">true<" in str(x[c].iloc[i]).lower():
df_css[c].iloc[i] = 'background-color: rgba(0, 255, 0, 0.1);'
elif x[c].iloc[i] == False or ">false<" in str(x[c].iloc[i]).lower():
df_css[c].iloc[i] = 'background-color: rgba(255, 0, 0, 0.1);'
else:
df_css[c].iloc[i] = ''
return df_css
def get_model_tournament_table(self, submission_id, category):
if category == self.TASKS_CATEGORY_OVERALL:
return None
model_tournament_table = []
with self.var_lock.ro:
for competitor_id in self.tournament_results[submission_id].keys() - {submission_id}: # without self
data = self.submission_id_to_data[competitor_id]
match_results = {}
for task in self.tournament_results[submission_id][competitor_id]:
task_category = self.TASKS_METADATA[task]["category"]
if task_category == category:
match_task_result_details = dict.fromkeys(["significant", "p_value"]) # order has impact to sorting DataFrame
match_task_result_details.update(copy.deepcopy(self.tournament_results[submission_id][competitor_id][task]))
match_task_result_details["significant"] = str(match_task_result_details["significant"]).lower() # originaly bool
match_task_result_significant = match_task_result_details["significant"]
match_task_result_details = "\n".join(f"{k}: {v}" for k, v in match_task_result_details.items())
match_results[task] = f'<abbr title={xmlQuoteAttr(match_task_result_details)}>{match_task_result_significant}</abbr>'
model_link = data["metadata"]["link_to_model"]
model_title = data["metadata"]["team_name"] + "/" + data["metadata"]["model_name"]
model_title_abbr_team_name = self.abbreviate(data["metadata"]["team_name"], 28)
model_title_abbr_model_name = self.abbreviate(data["metadata"]["model_name"], 28)
model_title_abbr_html = f'<div style="font-size: 10px;">{xmlEscape(model_title_abbr_team_name, MARKDOWN_SPECIAL_CHARACTERS)}</div>{xmlEscape(model_title_abbr_model_name, MARKDOWN_SPECIAL_CHARACTERS)}'
match_results["model"] = f'<a href={xmlQuoteAttr(model_link)} title={xmlQuoteAttr(model_title)}>{model_title_abbr_html}</a>'
model_tournament_table.append(match_results)
dataframe = pd.DataFrame.from_records(model_tournament_table)
extra_attributes_map_word_to_header = {
"model": "Competitor",
}
first_attributes = [
"model",
]
df_order = [
key
for key in dict.fromkeys(
first_attributes
+ sorted(
list(self.TASKS_METADATA.keys())
+ list(dataframe.columns)
)
).keys()
if key in dataframe.columns
]
dataframe = dataframe[df_order]
attributes_map_word_to_header = {key: value["abbreviation"] for key, value in self.TASKS_METADATA.items()}
attributes_map_word_to_header.update(extra_attributes_map_word_to_header)
dataframe = dataframe.rename(
columns=attributes_map_word_to_header
)
dataframe = dataframe.style.apply(self._model_tournament_table_highlight_true_and_false, axis=None)
return dataframe
def get_leaderboard(self, pre_submit=None, category=None):
with self.var_lock.ro:
tournament_results = pre_submit.tournament_results if pre_submit else self.tournament_results
category = category if category else self.TASKS_CATEGORY_OVERALL
if len(tournament_results) == 0:
return pd.DataFrame(columns=['No submissions yet'])
else:
processed_results = []
for submission_id in tournament_results.keys():
if submission_id not in self.submission_id_to_data:
if pre_submit and submission_id == pre_submit.submission_id:
data = json.load(open(pre_submit.file))
else:
raise gr.Error(f"Internal error: Submission [{submission_id}] not found")
else:
data = self.submission_id_to_data[submission_id]
if submission_id != data["metadata"]["submission_id"]:
raise gr.Error(f"Proper submission [{submission_id}] not found")
local_results = {}
win_score = {}
visible_metrics_map_word_to_header = {}
for task in self.TASKS_METADATA.keys():
task_category = self.TASKS_METADATA[task]["category"]
if category not in (self.TASKS_CATEGORY_OVERALL, task_category):
continue
else:
# tournament_results
num_of_competitors = 0
num_of_wins = 0
for competitor_id in tournament_results[submission_id].keys() - {submission_id}: # without self
num_of_competitors += 1
if tournament_results[submission_id][competitor_id][task]["significant"]:
num_of_wins += 1
task_score = num_of_wins / num_of_competitors * 100 if num_of_competitors > 0 else 100
win_score.setdefault(task_category, []).append(task_score)
if category == task_category:
local_results[task] = task_score
for metric in VISIBLE_METRICS:
visible_metrics_map_word_to_header[task + "_" + metric] = self.TASKS_METADATA[task]["abbreviation"] + " " + metric
metric_value = data['results'][task].get(metric)
if metric_value is not None:
local_results[task + "_" + metric] = metric_value if metric == "word_perplexity" else metric_value * 100
break # Only the first metric of every task
for c in win_score:
win_score[c] = sum(win_score[c]) / len(win_score[c])
if category == self.TASKS_CATEGORY_OVERALL:
for c in win_score:
local_results[c] = win_score[c]
local_results["average_score"] = sum(win_score.values()) / len(win_score)
else:
local_results["average_score"] = win_score[category]
model_link = data["metadata"]["link_to_model"]
model_title = data["metadata"]["team_name"] + "/" + data["metadata"]["model_name"]
model_title_abbr_team_name = self.abbreviate(data["metadata"]["team_name"], 28)
model_title_abbr_model_name = self.abbreviate(data["metadata"]["model_name"], 28)
model_title_abbr_html = f'<div style="font-size: 10px;">{xmlEscape(model_title_abbr_team_name, MARKDOWN_SPECIAL_CHARACTERS)}</div>{xmlEscape(model_title_abbr_model_name, MARKDOWN_SPECIAL_CHARACTERS)}'
local_results["model"] = f'<a href={xmlQuoteAttr(model_link)} title={xmlQuoteAttr(model_title)}>{model_title_abbr_html}</a>'
release = data["metadata"].get("submission_timestamp")
release = time.strftime("%Y-%m-%d", time.gmtime(release)) if release else "N/A"
local_results["release"] = release
local_results["model_type"] = data["metadata"]["model_type"]
local_results["parameters"] = data["metadata"]["parameters"]
if pre_submit and submission_id == pre_submit.submission_id:
processed_results.insert(0, local_results)
else:
processed_results.append(local_results)
dataframe = pd.DataFrame.from_records(processed_results)
extra_attributes_map_word_to_header = {
"model": "Model",
"release": "Release",
"average_score": "Average ⬆️",
"team_name": "Team name",
"model_name": "Model name",
"model_type": "Type",
"parameters": "# θ (B)",
"input_length": "Input length (# tokens)",
"precision": "Precision",
"description": "Description",
"link_to_model": "Link to model"
}
first_attributes = [
"model",
"release",
"model_type",
"parameters",
"average_score",
]
df_order = [
key
for key in dict.fromkeys(
first_attributes
+ sorted(
list(self.TASKS_METADATA.keys())
+ list(dataframe.columns)
)
).keys()
if key in dataframe.columns
]
dataframe = dataframe[df_order]
attributes_map_word_to_header = {key: value["abbreviation"] for key, value in self.TASKS_METADATA.items()}
attributes_map_word_to_header.update(extra_attributes_map_word_to_header)
attributes_map_word_to_header.update(visible_metrics_map_word_to_header)
dataframe = dataframe.rename(
columns=attributes_map_word_to_header
)
return dataframe
def start_tournament(self, new_submission_id, new_model_file):
with self.var_lock.ro:
new_tournament = copy.deepcopy(self.tournament_results)
new_tournament[new_submission_id] = {}
new_tournament[new_submission_id][new_submission_id] = {
task: False for task in self.TASKS_METADATA.keys()
}
rest_of_competitors = list(self.submission_ids - {new_submission_id}) # without self
num_of_competitors = len(rest_of_competitors)
result_url = {}
result_inverse_url = {}
while rest_of_competitors:
next_competitors = []
while rest_of_competitors:
if len(next_competitors) < 5: # 5*2==10 tasks
next_competitors.append(rest_of_competitors.pop())
else:
break
for competitor_id in next_competitors:
result_url[competitor_id] = check_significance_send_task(new_model_file, self.submission_id_to_file[competitor_id])
result_inverse_url[competitor_id] = check_significance_send_task(self.submission_id_to_file[competitor_id], new_model_file)
while next_competitors:
competitor_id = next_competitors.pop(0)
result = check_significance_wait_for_result(result_url.pop(competitor_id))
result_inverse = check_significance_wait_for_result(result_inverse_url.pop(competitor_id))
if rest_of_competitors:
new_competitor_id = rest_of_competitors.pop()
next_competitors.append(new_competitor_id)
result_url[new_competitor_id] = check_significance_send_task(new_model_file, self.submission_id_to_file[new_competitor_id])
result_inverse_url[new_competitor_id] = check_significance_send_task(self.submission_id_to_file[new_competitor_id], new_model_file)
new_tournament[new_submission_id][competitor_id] = result
new_tournament[competitor_id][new_submission_id] = result_inverse
num_of_competitors_done = num_of_competitors - len(next_competitors) - len(rest_of_competitors)
gr.Info(f"Tournament: {num_of_competitors_done}/{num_of_competitors} = {(num_of_competitors_done) * 100 // num_of_competitors}% done")
return new_tournament
@staticmethod
def abbreviate(s, max_length, dots_place="center"):
if len(s) <= max_length:
return s
else:
if max_length <= 1:
return "…"
elif dots_place == "begin":
return "…" + s[-max_length + 1:].lstrip()
elif dots_place == "center" and max_length >= 3:
max_length_begin = max_length // 2
max_length_end = max_length - max_length_begin - 1
return s[:max_length_begin].rstrip() + "…" + s[-max_length_end:].lstrip()
else: # dots_place == "end"
return s[:max_length - 1].rstrip() + "…"
@staticmethod
def create_submission_id(metadata):
# Délka ID musí být omezena, protože se používá v názvu souboru
submission_id = "_".join([metadata[key][:7] for key in (
"team_name",
"model_name",
"model_predictions_sha256",
"model_results_sha256",
)])
submission_id = submission_id.replace("/", "_").replace("\n", "_").strip()
return submission_id
@staticmethod
def get_sha256_hexdigest(obj):
data = json.dumps(
obj,
separators=(',', ':'),
sort_keys=True,
ensure_ascii=True,
).encode()
result = hashlib.sha256(data).hexdigest()
return result
PreSubmit = namedtuple('PreSubmit', 'tournament_results, submission_id, file')
def prepare_model_for_submission(self, file, metadata) -> PreSubmit:
with open(file, "r") as f:
data = json.load(f)
data["metadata"] = metadata
metadata["model_predictions_sha256"] = self.get_sha256_hexdigest(data["predictions"])
metadata["model_results_sha256"] = self.get_sha256_hexdigest(data["results"])
submission_id = self.create_submission_id(metadata)
metadata["submission_id"] = submission_id
metadata["submission_timestamp"] = time.time() # timestamp
with open(file, "w") as f:
json.dump(data, f, separators=(',', ':')) # compact JSON
while True:
with self.pre_submit_lock:
if self.pre_submit == None:
gr.Info('Running tournament...', duration=15)
self.update_leaderboard()
tournament_results = self.start_tournament(submission_id, file)
self.pre_submit = self.PreSubmit(tournament_results, submission_id, file)
break
gr.Info("Waiting in queue...", duration=5)
time.sleep(10)
return self.pre_submit
def save_pre_submit(self):
with self.pre_submit_lock:
if self.pre_submit:
tournament_results, submission_id, file = self.pre_submit
self._upload_submission(submission_id, file)
self._upload_tournament_results(tournament_results)
self.pre_submit = None
def _upload_submission(self, submission_id, file):
api.upload_file(
path_or_fileobj=file,
path_in_repo=f"data/{submission_id}.json",
repo_id=self.server_address,
repo_type=self.repo_type,
token=HF_TOKEN,
)
def _upload_tournament_results(self, tournament_results):
# Temporary save tournament results
tournament_results_path = os.path.join(self.local_leaderboard, "tournament.json")
with open(tournament_results_path, "w") as f:
json.dump(tournament_results, f, sort_keys=True, indent=2) # readable JSON
api.upload_file(
path_or_fileobj=tournament_results_path,
path_in_repo="tournament.json",
repo_id=self.server_address,
repo_type=self.repo_type,
token=HF_TOKEN,
)
def get_model_detail(self, submission_id):
if submission_id not in self.submission_id_to_data:
raise gr.Error(f"Submission [{submission_id}] not found")
else:
with self.var_lock.ro:
data = self.submission_id_to_data[submission_id]
return data["metadata"]
|