Spaces:
Runtime error
Runtime error
# encoding: utf-8 | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from monoscene.modules import SegmentationHead | |
from monoscene.CRP3D import CPMegaVoxels | |
from monoscene.modules import Process, Upsample, Downsample | |
class UNet3D(nn.Module): | |
def __init__( | |
self, | |
class_num, | |
norm_layer, | |
full_scene_size, | |
feature, | |
project_scale, | |
context_prior=None, | |
bn_momentum=0.1, | |
): | |
super(UNet3D, self).__init__() | |
self.business_layer = [] | |
self.project_scale = project_scale | |
self.full_scene_size = full_scene_size | |
self.feature = feature | |
size_l1 = ( | |
int(self.full_scene_size[0] / project_scale), | |
int(self.full_scene_size[1] / project_scale), | |
int(self.full_scene_size[2] / project_scale), | |
) | |
size_l2 = (size_l1[0] // 2, size_l1[1] // 2, size_l1[2] // 2) | |
size_l3 = (size_l2[0] // 2, size_l2[1] // 2, size_l2[2] // 2) | |
dilations = [1, 2, 3] | |
self.process_l1 = nn.Sequential( | |
Process(self.feature, norm_layer, bn_momentum, dilations=[1, 2, 3]), | |
Downsample(self.feature, norm_layer, bn_momentum), | |
) | |
self.process_l2 = nn.Sequential( | |
Process(self.feature * 2, norm_layer, bn_momentum, dilations=[1, 2, 3]), | |
Downsample(self.feature * 2, norm_layer, bn_momentum), | |
) | |
self.up_13_l2 = Upsample( | |
self.feature * 4, self.feature * 2, norm_layer, bn_momentum | |
) | |
self.up_12_l1 = Upsample( | |
self.feature * 2, self.feature, norm_layer, bn_momentum | |
) | |
self.up_l1_lfull = Upsample( | |
self.feature, self.feature // 2, norm_layer, bn_momentum | |
) | |
self.ssc_head = SegmentationHead( | |
self.feature // 2, self.feature // 2, class_num, dilations | |
) | |
self.context_prior = context_prior | |
if context_prior: | |
self.CP_mega_voxels = CPMegaVoxels( | |
self.feature * 4, size_l3, bn_momentum=bn_momentum | |
) | |
def forward(self, input_dict): | |
res = {} | |
x3d_l1 = input_dict["x3d"] | |
x3d_l2 = self.process_l1(x3d_l1) | |
x3d_l3 = self.process_l2(x3d_l2) | |
if self.context_prior: | |
ret = self.CP_mega_voxels(x3d_l3) | |
x3d_l3 = ret["x"] | |
for k in ret.keys(): | |
res[k] = ret[k] | |
x3d_up_l2 = self.up_13_l2(x3d_l3) + x3d_l2 | |
x3d_up_l1 = self.up_12_l1(x3d_up_l2) + x3d_l1 | |
x3d_up_lfull = self.up_l1_lfull(x3d_up_l1) | |
ssc_logit_full = self.ssc_head(x3d_up_lfull) | |
res["ssc_logit"] = ssc_logit_full | |
return res | |