File size: 3,466 Bytes
4d85df4
 
 
 
 
 
 
 
 
9ddd3f1
4d85df4
 
e3dcfcf
4d85df4
 
 
 
 
e3dcfcf
4d85df4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3dcfcf
4d85df4
 
 
 
97b5aba
4d85df4
c1c8251
4d85df4
e3dcfcf
c1c8251
 
 
 
 
 
 
4d85df4
e3dcfcf
4d85df4
 
e3dcfcf
4d85df4
 
 
 
e3dcfcf
 
 
4d85df4
 
 
 
 
 
 
 
 
 
 
e3dcfcf
4d85df4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3dcfcf
4d85df4
 
 
 
 
 
e4a653e
 
 
4d85df4
 
 
 
e4a653e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import gradio as gr
import numpy as np
from torchvision import transforms
import torch
from helpers import *
import sys
import csv
from monoscene.monoscene import MonoScene

csv.field_size_limit(sys.maxsize)
torch.set_grad_enabled(False)


model = MonoScene.load_from_checkpoint(
        "monoscene_kitti.ckpt",
        dataset="kitti",
        n_classes=20,
        feature = 64,
        project_scale = 4,
        full_scene_size = (256, 256, 32),
    )

img_W, img_H = 1220, 370


def predict(img):
    img = np.array(img, dtype=np.float32, copy=False) / 255.0

    normalize_rgb = transforms.Compose(
            [
                transforms.ToTensor(),
                transforms.Normalize(
                    mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
                ),
            ]
        )
    img = normalize_rgb(img)
   
    batch = get_projections(img_W, img_H)
    batch["img"] = img
    for k in batch:
        batch[k] = batch[k].unsqueeze(0)#.cuda()

    pred = model(batch).squeeze()
    fig = draw(pred, batch['fov_mask_2'])


    return fig
   

description = """
MonoScene Demo on SemanticKITTI Validation Set (Sequence 08), which uses the <b>camera parameters of Sequence 08</b>.
Due to the <b>CPU-only</b> inference, it might take up to 20s to predict a scene. \n
This is a <b>smaller</b> model with half resolution and <b>w/o 3D CRP</b>. You can find the full model at: <a href="https://huggingface.co/spaces/CVPR/MonoScene">https://huggingface.co/spaces/CVPR/MonoScene</a>
<center>
    <a href="https://cv-rits.github.io/MonoScene/">
        <img style="display:inline" alt="Project page" src="https://img.shields.io/badge/Project%20Page-MonoScene-red">
    </a>
    <a href="https://arxiv.org/abs/2112.00726"><img style="display:inline" src="https://img.shields.io/badge/arXiv%20%2B%20supp-2112.00726-purple"></a>
    <a href="https://github.com/cv-rits/MonoScene"><img style="display:inline" src="https://img.shields.io/github/stars/cv-rits/MonoScene?style=social"></a>
</center>
"""
title = "MonoScene Lite - Half resolution, w/o 3D CRP"
article="""
<center>
    <img src='https://visitor-badge.glitch.me/badge?page_id=anhquancao.MonoScene_lite&left_color=darkmagenta&right_color=purple' alt='visitor badge'>
</center>
"""

examples = [
    'images/08/001385.jpg',
    'images/08/000295.jpg',
    'images/08/002505.jpg',
    'images/08/000085.jpg',
    'images/08/000290.jpg',
    'images/08/000465.jpg',
    'images/08/000790.jpg',
    'images/08/001005.jpg',
    'images/08/001380.jpg',
    'images/08/001530.jpg',
    'images/08/002360.jpg',
    'images/08/004059.jpg',
    'images/08/003149.jpg',
    'images/08/001446.jpg',
    'images/08/000010.jpg',
    'images/08/001122.jpg',
    'images/08/003533.jpg',
    'images/08/003365.jpg',
    'images/08/002944.jpg',
    'images/08/000822.jpg',
    'images/08/000103.jpg',
    'images/08/002716.jpg',
    'images/08/000187.jpg',
    'images/08/002128.jpg',
    'images/08/000511.jpg',
    'images/08/000618.jpg',
    'images/08/002010.jpg',
    'images/08/000234.jpg',
    'images/08/001842.jpg',
    'images/08/001687.jpg',
    'images/08/003929.jpg',
    'images/08/002272.jpg',
]




demo = gr.Interface(
    predict, 
    gr.Image(shape=(1220, 370)), 
    gr.Plot(),  
    article=article,
    title=title,
    enable_queue=True,
    cache_examples=False,
    live=False,
    examples=examples,
    description=description)


demo.launch(enable_queue=True, debug=False)