Spaces:
Runtime error
Runtime error
File size: 5,871 Bytes
4d85df4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import torch
import torch.nn as nn
from monoscene.DDR import Bottleneck3D
class ASPP(nn.Module):
"""
ASPP 3D
Adapt from https://github.com/cv-rits/LMSCNet/blob/main/LMSCNet/models/LMSCNet.py#L7
"""
def __init__(self, planes, dilations_conv_list):
super().__init__()
# ASPP Block
self.conv_list = dilations_conv_list
self.conv1 = nn.ModuleList(
[
nn.Conv3d(
planes, planes, kernel_size=3, padding=dil, dilation=dil, bias=False
)
for dil in dilations_conv_list
]
)
self.bn1 = nn.ModuleList(
[nn.BatchNorm3d(planes) for dil in dilations_conv_list]
)
self.conv2 = nn.ModuleList(
[
nn.Conv3d(
planes, planes, kernel_size=3, padding=dil, dilation=dil, bias=False
)
for dil in dilations_conv_list
]
)
self.bn2 = nn.ModuleList(
[nn.BatchNorm3d(planes) for dil in dilations_conv_list]
)
self.relu = nn.ReLU()
def forward(self, x_in):
y = self.bn2[0](self.conv2[0](self.relu(self.bn1[0](self.conv1[0](x_in)))))
for i in range(1, len(self.conv_list)):
y += self.bn2[i](self.conv2[i](self.relu(self.bn1[i](self.conv1[i](x_in)))))
x_in = self.relu(y + x_in) # modified
return x_in
class SegmentationHead(nn.Module):
"""
3D Segmentation heads to retrieve semantic segmentation at each scale.
Formed by Dim expansion, Conv3D, ASPP block, Conv3D.
Taken from https://github.com/cv-rits/LMSCNet/blob/main/LMSCNet/models/LMSCNet.py#L7
"""
def __init__(self, inplanes, planes, nbr_classes, dilations_conv_list):
super().__init__()
# First convolution
self.conv0 = nn.Conv3d(inplanes, planes, kernel_size=3, padding=1, stride=1)
# ASPP Block
self.conv_list = dilations_conv_list
self.conv1 = nn.ModuleList(
[
nn.Conv3d(
planes, planes, kernel_size=3, padding=dil, dilation=dil, bias=False
)
for dil in dilations_conv_list
]
)
self.bn1 = nn.ModuleList(
[nn.BatchNorm3d(planes) for dil in dilations_conv_list]
)
self.conv2 = nn.ModuleList(
[
nn.Conv3d(
planes, planes, kernel_size=3, padding=dil, dilation=dil, bias=False
)
for dil in dilations_conv_list
]
)
self.bn2 = nn.ModuleList(
[nn.BatchNorm3d(planes) for dil in dilations_conv_list]
)
self.relu = nn.ReLU()
self.conv_classes = nn.Conv3d(
planes, nbr_classes, kernel_size=3, padding=1, stride=1
)
def forward(self, x_in):
# Convolution to go from inplanes to planes features...
x_in = self.relu(self.conv0(x_in))
y = self.bn2[0](self.conv2[0](self.relu(self.bn1[0](self.conv1[0](x_in)))))
for i in range(1, len(self.conv_list)):
y += self.bn2[i](self.conv2[i](self.relu(self.bn1[i](self.conv1[i](x_in)))))
x_in = self.relu(y + x_in) # modified
x_in = self.conv_classes(x_in)
return x_in
class ProcessKitti(nn.Module):
def __init__(self, feature, norm_layer, bn_momentum, dilations=[1, 2, 3]):
super(Process, self).__init__()
self.main = nn.Sequential(
*[
Bottleneck3D(
feature,
feature // 4,
bn_momentum=bn_momentum,
norm_layer=norm_layer,
dilation=[i, i, i],
)
for i in dilations
]
)
def forward(self, x):
return self.main(x)
class Process(nn.Module):
def __init__(self, feature, norm_layer, bn_momentum, dilations=[1, 2, 3]):
super(Process, self).__init__()
self.main = nn.Sequential(
*[
Bottleneck3D(
feature,
feature // 4,
bn_momentum=bn_momentum,
norm_layer=norm_layer,
dilation=[i, i, i],
)
for i in dilations
]
)
def forward(self, x):
return self.main(x)
class Upsample(nn.Module):
def __init__(self, in_channels, out_channels, norm_layer, bn_momentum):
super(Upsample, self).__init__()
self.main = nn.Sequential(
nn.ConvTranspose3d(
in_channels,
out_channels,
kernel_size=3,
stride=2,
padding=1,
dilation=1,
output_padding=1,
),
norm_layer(out_channels, momentum=bn_momentum),
nn.ReLU(),
)
def forward(self, x):
return self.main(x)
class Downsample(nn.Module):
def __init__(self, feature, norm_layer, bn_momentum, expansion=8):
super(Downsample, self).__init__()
self.main = Bottleneck3D(
feature,
feature // 4,
bn_momentum=bn_momentum,
expansion=expansion,
stride=2,
downsample=nn.Sequential(
nn.AvgPool3d(kernel_size=2, stride=2),
nn.Conv3d(
feature,
int(feature * expansion / 4),
kernel_size=1,
stride=1,
bias=False,
),
norm_layer(int(feature * expansion / 4), momentum=bn_momentum),
),
norm_layer=norm_layer,
)
def forward(self, x):
return self.main(x)
|