File size: 1,786 Bytes
1d3d4a8
 
 
 
 
 
71e5c37
1d3d4a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
619b35a
1d3d4a8
619b35a
1d3d4a8
 
 
 
 
 
 
619b35a
aa1f998
1d3d4a8
8671c65
1d3d4a8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import gradio as gr
import librosa
from transformers import AutoFeatureExtractor, pipeline


def load_and_fix_data(input_file, model_sampling_rate):
    speech, sample_rate = librosa.load(input_file) 
    if len(speech.shape) > 1:
        speech = speech[:, 0] + speech[:, 1]
    if sample_rate != model_sampling_rate:
        speech = librosa.resample(speech, sample_rate, model_sampling_rate)
    return speech


feature_extractor = AutoFeatureExtractor.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-spanish")
sampling_rate = feature_extractor.sampling_rate

asr = pipeline("automatic-speech-recognition", model="jonatasgrosman/wav2vec2-large-xlsr-53-spanish")


def predict_and_ctc_lm_decode(input_file):
    speech = load_and_fix_data(input_file, sampling_rate)
    transcribed_text = asr(speech, chunk_length_s=5, stride_length_s=1)["text"]
    pipe1 = pipeline("sentiment-analysis", model = "finiteautomata/beto-sentiment-analysis")
    sentiment = pipe1(transcribed_text)[0]["label"]
    return sentiment


gr.Interface(
    predict_and_ctc_lm_decode,
    inputs=[
        gr.inputs.Audio(source="microphone", type="filepath", label="Record your audio")
    ],
    #outputs=[gr.outputs.Label(num_top_classes=2),gr.outputs.Label(num_top_classes=2), gr.outputs.Label(num_top_classes=2)],
    outputs=[gr.outputs.Textbox(label="Predicción")],
    examples=[["audio_test.wav"], ["sample_audio.wav"]],
    title="Sentiment Analysis of Spanish Transcribed Audio",
    description="This is a Gradio demo for Sentiment Analysis of Transcribed Spanish Audio. First, we do Speech to Text, and then we perform sentiment analysis on the obtained transcription of the input audio.",
    layout="horizontal",
    theme="huggingface",
).launch(enable_queue=True, cache_examples=True)