tacotron2-gst-en / data_preparation.py
mireiafarrus's picture
tacotron2 and hifigan upload
af7ac2b
import random
import numpy as np
import torch
import torch.utils.data
import nn_layers
from scipy.io.wavfile import read
from text import text_to_sequence
from hyper_parameters import tacotron_params
torch.manual_seed(1234)
class DataPreparation(torch.utils.data.Dataset):
def __init__(self, audiopaths_and_text, tacotron_hyperparams):
self.audiopaths_and_text = audiopaths_and_text
self.audio_text_parameters = tacotron_hyperparams
self.stft = nn_layers.TacotronSTFT(tacotron_hyperparams['filter_length'], tacotron_hyperparams['hop_length'],
tacotron_hyperparams['win_length'], tacotron_hyperparams['n_mel_channels'],
self.audio_text_parameters['sampling_rate'],
tacotron_hyperparams['mel_fmin'], tacotron_hyperparams['mel_fmax'])
random.seed(1234)
random.shuffle(self.audiopaths_and_text)
def load_audiowav_torch(self, audiopath, samp_rate):
sr, data = read(audiopath)
assert samp_rate == sr, "Sample rate does not match with the configuration"
return torch.FloatTensor(data.astype(np.float32))
def melspec_textSequence_pair(self, audiopath_and_text):
wav_path, sentence = audiopath_and_text[0], audiopath_and_text[1]
# wav to torch tensor
wav_torch = self.load_audiowav_torch(wav_path, self.audio_text_parameters['sampling_rate'])
wav_torch_norm = wav_torch / self.audio_text_parameters['max_wav_value']
wav_torch_norm = wav_torch_norm.unsqueeze(0)
wav_torch_norm = torch.autograd.Variable(wav_torch_norm, requires_grad=False)
mel_spec = self.stft.mel_spectrogram(wav_torch_norm)
mel_spec = torch.squeeze(mel_spec, 0)
# text to torch integer tensor sequence
sentence_sequence = torch.IntTensor(text_to_sequence(sentence, self.audio_text_parameters['text_cleaners']))
return sentence_sequence, mel_spec
def __getitem__(self, index):
return self.melspec_textSequence_pair(self.audiopaths_and_text[index])
def __len__(self):
return len(self.audiopaths_and_text)
class DataCollate:
def __init__(self, number_frames_step):
self.number_frames_step = number_frames_step
def __call__(self, batch):
inp_lengths, sorted_decreasing = torch.sort(torch.LongTensor([len(x[0]) for x in batch]),
dim=0, descending=True)
max_length_in = inp_lengths[0]
# padding sentences sequences for a fixed-length tensor size
sentences_padded = torch.LongTensor(len(batch), max_length_in)
sentences_padded.zero_()
for i in range(len(sorted_decreasing)):
int_seq_sentence = batch[sorted_decreasing[i]][0]
# all slots of a line until the end of the sentence. The rest, 0's
sentences_padded[i, :int_seq_sentence.size(0)] = int_seq_sentence
# length of the mel filterbank used
num_melfilters = batch[0][1].size(0)
# longest recorded spectrogram representation + 1 space to mark the end
max_length_target = max([x[1].size(1) for x in batch]) # THERE IS A CHANGE FROM THE ORIGINAL CODE!!!
# add extra space if the number of frames per step is higher than 1
if max_length_target % self.number_frames_step != 0:
max_length_target += self.number_frames_step - max_length_target % self.number_frames_step
assert max_length_target % self.number_frames_step == 0
# padding mel spectrogram representations. The output is a 3D tensor
melspec_padded = torch.FloatTensor(len(batch), num_melfilters, max_length_target)
melspec_padded.zero_()
# GST new prosody matrices definition with zero padding:
prosody_padded = torch.FloatTensor(len(batch), num_melfilters, max_length_target)
prosody_padded.zero_()
gate_padded = torch.FloatTensor(len(batch), max_length_target)
gate_padded.zero_()
output_lengths = torch.LongTensor(len(batch))
for j in range(len(sorted_decreasing)):
melspec = batch[sorted_decreasing[j]][1]
melspec_padded[j, :, :melspec.size(1)] = melspec
# GST filling padded prosody matrix:
prosody_padded[j, :, :melspec.size(1)] = melspec
gate_padded[j, melspec.size(1) - 1:] = 1
output_lengths[j] = melspec.size(1)
return sentences_padded, inp_lengths, melspec_padded, gate_padded, output_lengths, prosody_padded