Spaces:
Sleeping
Sleeping
import numpy as np | |
from scipy.io.wavfile import read | |
import torch | |
def get_mask_from_lengths(lengths): | |
max_len = torch.max(lengths).item() | |
ids = torch.arange(0, max_len, out=torch.cuda.LongTensor(max_len)) | |
mask = (ids < lengths.unsqueeze(1)).byte() | |
# mask = (ids < lengths.unsqueeze(1).cuda()).cpu() | |
# mask = mask.byte() | |
return mask | |
# probably I won't use it from here | |
def load_wav_to_torch(full_path, sr): | |
sampling_rate, data = read(full_path) | |
assert sr == sampling_rate, "{} SR doesn't match {} on path {}".format( | |
sr, sampling_rate, full_path) | |
return torch.FloatTensor(data.astype(np.float32)) | |
# probably I won't use it from here | |
def load_filepaths_and_text(filename, sort_by_length, split="|"): | |
with open(filename, encoding='utf-8') as f: | |
filepaths_and_text = [line.strip().split(split) for line in f] | |
if sort_by_length: | |
filepaths_and_text.sort(key=lambda x: len(x[1])) | |
return filepaths_and_text | |
def to_gpu(x): | |
x = x.contiguous() | |
if torch.cuda.is_available(): | |
x = x.cuda(non_blocking=True) # I understand this lets asynchronous processing | |
return torch.autograd.Variable(x) | |