tacotron2-gst-en / plotting_utils.py
mireiafarrus's picture
tacotron2 and hifigan upload
af7ac2b
raw
history blame
2.39 kB
import matplotlib
matplotlib.use("Agg")
import matplotlib.pylab as plt
import numpy as np
def save_figure_to_numpy(fig):
# save it to a numpy array.
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
return data
def plot_alignment_to_numpy(alignment, info=None):
fig, ax = plt.subplots(figsize=(6, 4))
im = ax.imshow(alignment, aspect='auto', origin='lower',
interpolation='none')
fig.colorbar(im, ax=ax)
xlabel = 'Decoder timestep'
if info is not None:
xlabel += '\n\n' + info
plt.xlabel(xlabel)
plt.ylabel('Encoder timestep')
plt.tight_layout()
fig.canvas.draw()
data = save_figure_to_numpy(fig)
plt.close()
data = data.transpose(2, 0, 1)
return data
def plot_gst_scores_to_numpy(gst_scores, info=None):
fig, ax = plt.subplots(figsize=(6, 4))
im = ax.imshow(gst_scores, aspect='auto', origin='lower',
interpolation='none')
fig.colorbar(im, ax=ax)
xlabel = 'Validation samples'
if info is not None:
xlabel += '\n\n' + info
plt.xlabel(xlabel)
plt.ylabel('Style Tokens')
plt.tight_layout()
fig.canvas.draw()
data = save_figure_to_numpy(fig)
plt.close()
data = data.transpose(2, 0, 1)
return data
def plot_spectrogram_to_numpy(spectrogram):
fig, ax = plt.subplots(figsize=(12, 3))
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
interpolation='none')
plt.colorbar(im, ax=ax)
plt.xlabel("Frames")
plt.ylabel("Channels")
plt.tight_layout()
fig.canvas.draw()
data = save_figure_to_numpy(fig)
plt.close()
data = data.transpose(2, 0, 1)
return data
def plot_gate_outputs_to_numpy(gate_targets, gate_outputs):
fig, ax = plt.subplots(figsize=(12, 3))
ax.scatter(range(len(gate_targets)), gate_targets, alpha=0.5,
color='green', marker='+', s=1, label='target')
ax.scatter(range(len(gate_outputs)), gate_outputs, alpha=0.5,
color='red', marker='.', s=1, label='predicted')
plt.xlabel("Frames (Green target, Red predicted)")
plt.ylabel("Gate State")
plt.tight_layout()
fig.canvas.draw()
data = save_figure_to_numpy(fig)
plt.close()
data = data.transpose(2, 0, 1)
return data