tacotron2-gst-en / training.py
mireiafarrus's picture
tacotron2 and hifigan upload
af7ac2b
raw
history blame
11.4 kB
# ONE EPOCH = one forward pass and one backward pass of all the training examples.
#
# BATCH SIZE = the number of training examples in one forward/backward pass. The
# higher the batch size, the more memory space you'll need.
#
# NUMBER OF ITERATIONS = number of passes, each pass using [batch size] number of
# examples. To be clear, one pass = one forward pass + one backward pass.
#
# Example: if you have 1000 training examples, and your batch size is 500, then
# it will take 2 iterations to complete 1 epoch.
import os
import time
import math
import torch
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import DataLoader
from numpy import finfo
from Tacotron2 import tacotron_2
from fp16_optimizer import FP16_Optimizer
# from distributed import apply_gradient_allreduce
from loss_function import Tacotron2Loss
from logger import Tacotron2Logger
def batchnorm_to_float(module):
"""Converts batch norm modules to FP32"""
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
module.float()
for child in module.children():
batchnorm_to_float(child)
return module
def reduce_tensor(tensor, n_gpus):
# this function is recorded in the computation graph. Gradients propagating to the cloned tensor will propagate to
# the original tensor
rt = tensor.clone()
# Each rank has a tensor and all_reduce sums up all tensors from different ranks to all ranks. Computes the average
# of the tensor results of all ranks (a rank is a gpu as far as I understood):
dist.all_reduce(rt, op=dist.reduce_op.SUM)
rt /= n_gpus
return rt
def prepare_directories_and_logger(output_directory, log_directory, rank):
if rank == 0:
if not os.path.isdir(output_directory):
os.makedirs(output_directory)
os.chmod(output_directory, 0o775)
logger = Tacotron2Logger(os.path.join(output_directory, log_directory))
# logger = None
else:
logger = None
return logger
def warm_start_model(checkpoint_path, model):
assert os.path.isfile(checkpoint_path)
print("Warm starting model from checkpoint '{}'".format(checkpoint_path))
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
model.load_state_dict(checkpoint_dict['state_dict'])
return model
def load_checkpoint(checkpoint_path, model, optimizer):
assert os.path.isfile(checkpoint_path)
print("Loading checkpoint '{}'".format(checkpoint_path))
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
model.load_state_dict(checkpoint_dict['state_dict'])
optimizer.load_state_dict(checkpoint_dict['optimizer'])
learning_rate = checkpoint_dict['learning_rate']
iteration = checkpoint_dict['iteration']
print("Loaded checkpoint '{}' from iteration {}".format(checkpoint_path, iteration))
return model, optimizer, learning_rate, iteration
def save_checkpoint(model, optimizer, learning_rate, iteration, filepath):
print("Saving model and optimizer state at iteration {} to {}".format(iteration, filepath))
torch.save({'iteration': iteration,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'learning_rate': learning_rate}, filepath)
def init_distributed(hyper_params, n_gpus, rank, group_name):
assert torch.cuda.is_available(), "Distributed mode requires CUDA"
print("Initializing distributed")
# Set CUDA device so everything is done on the right GPU
torch.cuda.set_device(rank % torch.cuda.device_count())
# Initialize distributed communication
torch.distributed.init_process_group(backend=hyper_params['dist_backend'], rank=rank, world_size=n_gpus,
init_method=hyper_params['dist_url'], group_name=group_name)
print("Initializing distributed: Done")
def load_model(hyper_params):
# according to the documentation, it is recommended to move a model to GPU before constructing the optimizer
# model = tacotron_2(hyper_params).cuda()
model = tacotron_2(hyper_params)
if hyper_params['fp16_run']: # converts everything into half type (16 bits)
model = batchnorm_to_float(model.half())
model.decoder.attention_layer.score_mask_value = float(finfo('float16').min)
# if hyper_params['distributed_run']:
# model = apply_gradient_allreduce(model)
return model
def validate(model, criterion, valset, iteration, batch_size, n_gpus, collate_fn, logger, distributed_run, rank):
"""Handles all the validation scoring and printing"""
# We change to eval() because this is an evaluation stage and not a training
model.eval()
# temporarily set all the requires_grad flag to false
with torch.no_grad():
# Sampler that restricts data loading to a subset of the dataset. Distributed sampler for distributed batch.
# Which samples take (randomization?)
val_sampler = DistributedSampler(valset) if distributed_run else None
# data loader wraper to the validation data (same as for the training data)
val_loader = DataLoader(valset, sampler=val_sampler, num_workers=1, shuffle=False, batch_size=batch_size,
pin_memory=False, collate_fn=collate_fn)
val_loss = 0.0
for i, batch in enumerate(val_loader):
x, y = model.parse_batch(batch)
y_pred = model(x)
_, _, _, _, gst_scores = y_pred
if i == 0:
validation_gst_scores = gst_scores
else:
validation_gst_scores = torch.cat((validation_gst_scores, gst_scores), 0)
loss = criterion(y_pred, y)
if distributed_run:
reduced_val_loss = reduce_tensor(loss.data, n_gpus).item() # gets the pure float value with item()
else:
reduced_val_loss = loss.item()
val_loss += reduced_val_loss
val_loss = val_loss / (i + 1) # Averaged val_loss from all batches
model.train()
if rank == 0:
print("Validation loss {}: {:9f} ".format(iteration, val_loss)) # I changed this
# print("GST scores of the validation set: {}".format(validation_gst_scores.shape))
logger.log_validation(reduced_val_loss, model, y, y_pred, validation_gst_scores, iteration)
# ------------------------------------------- MAIN TRAINING METHOD -------------------------------------------------- #
def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus, rank, group_name,
hyper_params, train_loader, valset, collate_fn):
"""Training and validation method with logging results to tensorboard and stdout
:param output_directory (string): directory to save checkpoints
:param log_directory (string): directory to save tensorboard logs
:param checkpoint_path (string): checkpoint path
:param n_gpus (int): number of gpus
:param rank (int): rank of current gpu
:param hyper_params (object dictionary): dictionary with all hyper parameters
"""
# Check whether is a distributed running
if hyper_params['distributed_run']:
init_distributed(hyper_params, n_gpus, rank, group_name)
# set the same fixed seed to reproduce same results everytime we train
torch.manual_seed(hyper_params['seed'])
torch.cuda.manual_seed(hyper_params['seed'])
model = load_model(hyper_params)
learning_rate = hyper_params['learning_rate']
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=hyper_params['weight_decay'])
if hyper_params['fp16_run']:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=hyper_params['dynamic_loss_scaling'])
# Define the criterion of the loss function. The objective.
criterion = Tacotron2Loss()
logger = prepare_directories_and_logger(output_directory, log_directory, rank)
# logger = ''
iteration = 0
epoch_offset = 0
if checkpoint_path is not None:
if warm_start:
# Re-start the model from the last checkpoint if we save the parameters and don't want to start from 0
model = warm_start_model(checkpoint_path, model)
else:
# CHECK THIS OUT!!!
model, optimizer, _learning_rate, iteration = load_checkpoint(checkpoint_path, model, optimizer)
if hyper_params['use_saved_learning_rate']:
learning_rate = _learning_rate
iteration += 1 # next iteration is iteration + 1
epoch_offset = max(0, int(iteration / len(train_loader)))
# Set this to make all modules and regularization aware this is the training stage:
model.train()
# MAIN LOOP
for epoch in range(epoch_offset, hyper_params['epochs']):
print("Epoch: {}".format(epoch))
for i, batch in enumerate(train_loader):
start = time.perf_counter()
# CHECK THIS OUT!!!
for param_group in optimizer.param_groups:
param_group['lr'] = learning_rate
model.zero_grad()
input_data, output_target = model.parse_batch(batch)
output_predicted = model(input_data)
loss = criterion(output_predicted, output_target)
if hyper_params['distributed_run']:
reduced_loss = reduce_tensor(loss.data, n_gpus).item()
else:
reduced_loss = loss.item()
if hyper_params['fp16_run']:
optimizer.backward(loss) # transformed optimizer into fp16 type
grad_norm = optimizer.clip_fp32_grads(hyper_params['grad_clip_thresh'])
else:
loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), hyper_params['grad_clip_thresh'])
# Performs a single optimization step (parameter update)
optimizer.step()
# This boolean controls overflow when running in fp16 optimizer
overflow = optimizer.overflow if hyper_params['fp16_run'] else False
# If overflow is True, it will not enter. If isnan is True, it will not enter neither.
if not overflow and not math.isnan(reduced_loss) and rank == 0:
duration = time.perf_counter() - start
print("Train loss {} {:.6f} Grand Norm {:.6f} {:.2f}s/it".format(iteration, reduced_loss,
grad_norm, duration))
# logs training information of the current iteration
logger.log_training(reduced_loss, grad_norm, learning_rate, duration, iteration)
# Every iters_per_checkpoint steps there is a validation of the model and its updated parameters
if not overflow and (iteration % hyper_params['iters_per_checkpoint'] == 0):
validate(model, criterion, valset, iteration, hyper_params['batch_size'], n_gpus, collate_fn,
logger, hyper_params['distributed_run'], rank)
if rank == 0:
checkpoint_path = os.path.join(output_directory, "checkpoint_{}".format(iteration))
save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path)
iteration += 1