tacotron2-gst-en / nn_layers.py
mireiafarrus's picture
tacotron2 and hifigan upload
af7ac2b
raw
history blame
4.85 kB
import torch
from torch import nn
from librosa.filters import mel as librosa_mel_fn
from stft import STFT
torch.manual_seed(1234)
clip_val = 1e-5
C = 1
class convolutional_module(nn.Module):
"""This class defines a 1d convolutional layer and its initialization for the system we are
replicating"""
def __init__(self, in_ch, out_ch, kernel_size=1, stride=1, padding=None, dilation=1, bias=True,
w_init_gain='linear'):
# in PyTorch you define your Models as subclasses of torch.nn.Module
super(convolutional_module, self).__init__()
if padding is None:
assert(kernel_size % 2 == 1)
padding = int(dilation * (kernel_size - 1) / 2)
# initialize the convolutional layer which is an instance of Conv1d
# torch.nn.Conv1d calls internally the method torch.nn.functional.conv1d, which accepts the
# input with the shape (minibatch x in_channels x input_w), and a weight of shape
# (out_channels x (in_channels/groups) x kernel_w). In our case, we do not split into groups.
# Then, our input shape will be (48 x 512 x 189) and the weights are set up as
# (512 x 512 x 5)
self.conv_layer = torch.nn.Conv1d(in_ch, out_ch, kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation, bias=bias)
"""Useful information of Xavier initialization in:
https://prateekvjoshi.com/2016/03/29/understanding-xavier-initialization-in-deep-neural-networks/"""
torch.nn.init.xavier_uniform_(self.conv_layer.weight, gain=torch.nn.init.calculate_gain(w_init_gain))
def forward(self, x):
conv_output = self.conv_layer(x)
return conv_output
class linear_module(torch.nn.Module):
"""This class defines a linear layer and its initialization method for the system we are
replicating. This implements a linear transformation: y = xA^t + b"""
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
super(linear_module, self).__init__()
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
torch.nn.init.xavier_uniform_(self.linear_layer.weight, gain=torch.nn.init.calculate_gain(w_init_gain))
def forward(self, x):
return self.linear_layer(x)
class location_layer(nn.Module):
def __init__(self, attention_n_filters, attention_kernel_size, attention_dim):
super(location_layer, self).__init__()
padding = int((attention_kernel_size - 1) / 2)
"""We are being very restricting without training a bias"""
"""I think in_channels = 2 is k (number of vectors for every encoded stage position from prev.
alignment)."""
self.location_conv = convolutional_module(2, attention_n_filters, kernel_size=attention_kernel_size,
padding=padding, bias=False, stride=1, dilation=1)
self.location_dense = linear_module(attention_n_filters, attention_dim, bias=False,
w_init_gain='tanh')
def forward(self, attention_weights_cat):
processed_attention = self.location_conv(attention_weights_cat)
processed_attention = processed_attention.transpose(1, 2)
processed_attention = self.location_dense(processed_attention)
return processed_attention
class TacotronSTFT(nn.Module):
def __init__(self, filter_length=1024, hop_length=256, win_length=1024,
n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0,
mel_fmax=8000.0):
super(TacotronSTFT, self).__init__()
self.n_mel_channels = n_mel_channels
self.sampling_rate = sampling_rate
self.stft_fn = STFT(filter_length, hop_length, win_length)
mel_basis = librosa_mel_fn(sr=sampling_rate, n_fft=filter_length, n_mels=n_mel_channels,
fmin=mel_fmin, fmax=mel_fmax)
mel_basis = torch.from_numpy(mel_basis).float()
self.register_buffer('mel_basis', mel_basis)
def spectral_de_normalize(self, magnitudes):
output = torch.exp(magnitudes) / C
return output
def mel_spectrogram(self, y):
"""Computes mel-spectrograms from a batch of waves
PARAMS
------
y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1]
RETURNS
-------
mel_output: torch.FloatTensor of shape (B, n_mel_channels, T)
"""
assert(torch.min(y.data) >= -1)
assert(torch.max(y.data) <= 1)
magnitudes, phases = self.stft_fn.transform(y)
magnitudes = magnitudes.data
mel_output = torch.matmul(self.mel_basis, magnitudes)
mel_output = torch.log(torch.clamp(mel_output, min=clip_val) * C)
return mel_output