Spaces:
Sleeping
Sleeping
import torch | |
from torch import nn | |
from librosa.filters import mel as librosa_mel_fn | |
from stft import STFT | |
torch.manual_seed(1234) | |
clip_val = 1e-5 | |
C = 1 | |
class convolutional_module(nn.Module): | |
"""This class defines a 1d convolutional layer and its initialization for the system we are | |
replicating""" | |
def __init__(self, in_ch, out_ch, kernel_size=1, stride=1, padding=None, dilation=1, bias=True, | |
w_init_gain='linear'): | |
# in PyTorch you define your Models as subclasses of torch.nn.Module | |
super(convolutional_module, self).__init__() | |
if padding is None: | |
assert(kernel_size % 2 == 1) | |
padding = int(dilation * (kernel_size - 1) / 2) | |
# initialize the convolutional layer which is an instance of Conv1d | |
# torch.nn.Conv1d calls internally the method torch.nn.functional.conv1d, which accepts the | |
# input with the shape (minibatch x in_channels x input_w), and a weight of shape | |
# (out_channels x (in_channels/groups) x kernel_w). In our case, we do not split into groups. | |
# Then, our input shape will be (48 x 512 x 189) and the weights are set up as | |
# (512 x 512 x 5) | |
self.conv_layer = torch.nn.Conv1d(in_ch, out_ch, kernel_size=kernel_size, stride=stride, | |
padding=padding, dilation=dilation, bias=bias) | |
"""Useful information of Xavier initialization in: | |
https://prateekvjoshi.com/2016/03/29/understanding-xavier-initialization-in-deep-neural-networks/""" | |
torch.nn.init.xavier_uniform_(self.conv_layer.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) | |
def forward(self, x): | |
conv_output = self.conv_layer(x) | |
return conv_output | |
class linear_module(torch.nn.Module): | |
"""This class defines a linear layer and its initialization method for the system we are | |
replicating. This implements a linear transformation: y = xA^t + b""" | |
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'): | |
super(linear_module, self).__init__() | |
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) | |
torch.nn.init.xavier_uniform_(self.linear_layer.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) | |
def forward(self, x): | |
return self.linear_layer(x) | |
class location_layer(nn.Module): | |
def __init__(self, attention_n_filters, attention_kernel_size, attention_dim): | |
super(location_layer, self).__init__() | |
padding = int((attention_kernel_size - 1) / 2) | |
"""We are being very restricting without training a bias""" | |
"""I think in_channels = 2 is k (number of vectors for every encoded stage position from prev. | |
alignment).""" | |
self.location_conv = convolutional_module(2, attention_n_filters, kernel_size=attention_kernel_size, | |
padding=padding, bias=False, stride=1, dilation=1) | |
self.location_dense = linear_module(attention_n_filters, attention_dim, bias=False, | |
w_init_gain='tanh') | |
def forward(self, attention_weights_cat): | |
processed_attention = self.location_conv(attention_weights_cat) | |
processed_attention = processed_attention.transpose(1, 2) | |
processed_attention = self.location_dense(processed_attention) | |
return processed_attention | |
class TacotronSTFT(nn.Module): | |
def __init__(self, filter_length=1024, hop_length=256, win_length=1024, | |
n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0, | |
mel_fmax=8000.0): | |
super(TacotronSTFT, self).__init__() | |
self.n_mel_channels = n_mel_channels | |
self.sampling_rate = sampling_rate | |
self.stft_fn = STFT(filter_length, hop_length, win_length) | |
mel_basis = librosa_mel_fn(sr=sampling_rate, n_fft=filter_length, n_mels=n_mel_channels, | |
fmin=mel_fmin, fmax=mel_fmax) | |
mel_basis = torch.from_numpy(mel_basis).float() | |
self.register_buffer('mel_basis', mel_basis) | |
def spectral_de_normalize(self, magnitudes): | |
output = torch.exp(magnitudes) / C | |
return output | |
def mel_spectrogram(self, y): | |
"""Computes mel-spectrograms from a batch of waves | |
PARAMS | |
------ | |
y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1] | |
RETURNS | |
------- | |
mel_output: torch.FloatTensor of shape (B, n_mel_channels, T) | |
""" | |
assert(torch.min(y.data) >= -1) | |
assert(torch.max(y.data) <= 1) | |
magnitudes, phases = self.stft_fn.transform(y) | |
magnitudes = magnitudes.data | |
mel_output = torch.matmul(self.mel_basis, magnitudes) | |
mel_output = torch.log(torch.clamp(mel_output, min=clip_val) * C) | |
return mel_output | |