File size: 17,598 Bytes
af7ac2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import torch
from torch.autograd import Variable
from torch import nn
from torch.nn import functional as F
from nn_layers import linear_module, location_layer
from utils import get_mask_from_lengths

torch.manual_seed(1234)

class AttentionNet(nn.Module):
    # 1024, 512, 128, 32, 31
    def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
                 attention_location_n_filters, attention_location_kernel_size):
        super(AttentionNet, self).__init__()
        self.query_layer = linear_module(attention_rnn_dim, attention_dim,
                                      bias=False, w_init_gain='tanh')
        # Projecting inputs into 128-D hidden representation
        self.memory_layer = linear_module(embedding_dim, attention_dim, bias=False,
                                       w_init_gain='tanh')
        # Projecting into 1-D scalar value
        self.v = linear_module(attention_dim, 1, bias=False)
        # Convolutional layers to obtain location features and projecting them into 128-D hidden representation
        self.location_layer = location_layer(attention_location_n_filters,
                                            attention_location_kernel_size,
                                            attention_dim)
        self.score_mask_value = -float("inf")

    def get_alignment_energies(self, query, processed_memory,
                               attention_weights_cat):
        """
        PARAMS
        ------
        query: decoder output (batch, n_mel_channels * n_frames_per_step)
        processed_memory: processed encoder outputs (B, T_in, attention_dim)
        attention_weights_cat: cumulative and prev. att weights (B, 2, max_time)

        RETURNS
        -------
        alignment (batch, max_time)
        """

        processed_query = self.query_layer(query.unsqueeze(1))
        processed_attention_weights = self.location_layer(attention_weights_cat)
        energies = self.v(torch.tanh(
            processed_query + processed_attention_weights + processed_memory))

        energies = energies.squeeze(-1) # eliminates the third dimension of the tensor, which is 1.
        return energies

    def forward(self, attention_hidden_state, memory, processed_memory,
                attention_weights_cat, mask):
        """
        PARAMS
        ------
        attention_hidden_state: attention rnn last output
        memory: encoder outputs
        processed_memory: processed encoder outputs
        attention_weights_cat: previous and cummulative attention weights
        mask: binary mask for padded data
        """
        alignment = self.get_alignment_energies(
            attention_hidden_state, processed_memory, attention_weights_cat)

        if mask is not None:
            alignment.data.masked_fill_(mask, self.score_mask_value)

        attention_weights = F.softmax(alignment, dim=1)
        # I think attention_weights is a [BxNUMENCINPUTS] so with unsequeeze(1): [Bx1xNUMENCINPUTS] and memory is
        # [BxNUMENCINPUTSx512]
        attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
        attention_context = attention_context.squeeze(1)

        return attention_context, attention_weights


class Prenet(nn.Module):
    def __init__(self, in_dim, sizes):
        super(Prenet, self).__init__()
        in_sizes = [in_dim] + sizes[:-1] # all list values but the last one. The result is a list of the in_dim element
        # concatenated with sizes of layers (i.e. [80, 256])
        self.layers = nn.ModuleList(
            [linear_module(in_size, out_size, bias=False)
             for (in_size, out_size) in zip(in_sizes, sizes)])

    def forward(self, x):
        for linear in self.layers:
            x = F.dropout(F.relu(linear(x)), p=0.5, training=True)
        return x


class Decoder(nn.Module):
    def __init__(self, tacotron_hyperparams):
        super(Decoder, self).__init__()
        self.n_mel_channels = tacotron_hyperparams['n_mel_channels']
        self.n_frames_per_step = tacotron_hyperparams['number_frames_step']
        self.encoder_embedding_dim = tacotron_hyperparams['encoder_embedding_dim']
        self.attention_rnn_dim = tacotron_hyperparams['attention_rnn_dim'] # 1024
        self.decoder_rnn_dim = tacotron_hyperparams['decoder_rnn_dim'] # 1024
        self.prenet_dim = tacotron_hyperparams['prenet_dim']
        self.max_decoder_steps = tacotron_hyperparams['max_decoder_steps']
        # The threshold to decide whether stop or not stop decoding?
        self.gate_threshold = tacotron_hyperparams['gate_threshold']
        self.p_attention_dropout = tacotron_hyperparams['p_attention_dropout']
        self.p_decoder_dropout = tacotron_hyperparams['p_decoder_dropout']
        # Define the prenet: there is only one frame per step, so input dim is the number of mel channels.
        # There are two fully connected layers:
        self.prenet = Prenet(
            tacotron_hyperparams['n_mel_channels'] * tacotron_hyperparams['number_frames_step'],
            [tacotron_hyperparams['prenet_dim'], tacotron_hyperparams['prenet_dim']])
        # input_size: 1024 + 512 (output of first LSTM cell + attention_context) / hidden_size: 1024
        self.attention_rnn = nn.LSTMCell(
            tacotron_hyperparams['prenet_dim'] + tacotron_hyperparams['encoder_embedding_dim'],
            tacotron_hyperparams['attention_rnn_dim'])
        # return attention_weights and attention_context. Does the alignments.
        self.attention_layer = AttentionNet(
            tacotron_hyperparams['attention_rnn_dim'], tacotron_hyperparams['encoder_embedding_dim'],
            tacotron_hyperparams['attention_dim'], tacotron_hyperparams['attention_location_n_filters'],
            tacotron_hyperparams['attention_location_kernel_size'])
        # input_size: 256 + 512 (attention_context + prenet_info), hidden_size: 1024
        self.decoder_rnn = nn.LSTMCell(
            tacotron_hyperparams['attention_rnn_dim'] + tacotron_hyperparams['encoder_embedding_dim'],
            tacotron_hyperparams['decoder_rnn_dim'], 1)
        # (LSTM output)1024 + (attention_context)512, out_dim: number of mel channels. Last linear projection that
        # generates an output decoder spectral frame.
        self.linear_projection = linear_module(
            tacotron_hyperparams['decoder_rnn_dim'] + tacotron_hyperparams['encoder_embedding_dim'],
            tacotron_hyperparams['n_mel_channels']*tacotron_hyperparams['number_frames_step'])
        # decision whether to continue decoding.
        self.gate_layer = linear_module(
            tacotron_hyperparams['decoder_rnn_dim'] + tacotron_hyperparams['encoder_embedding_dim'], 1,
            bias=True, w_init_gain='sigmoid')

    def get_go_frame(self, memory):
        """ Gets all zeros frames to use as first decoder input
        PARAMS
        ------
        memory: decoder outputs

        RETURNS
        -------
        decoder_input: all zeros frames
        """
        B = memory.size(0)
        decoder_input = Variable(memory.data.new(
            B, self.n_mel_channels * self.n_frames_per_step).zero_())
        return decoder_input

    def initialize_decoder_states(self, memory, mask):
        """ Initializes attention rnn states, decoder rnn states, attention
        weights, attention cumulative weights, attention context, stores memory
        and stores processed memory
        PARAMS
        ------
        memory: Encoder outputs
        mask: Mask for padded data if training, expects None for inference
        """
        B = memory.size(0)
        MAX_TIME = memory.size(1)

        self.attention_hidden = Variable(memory.data.new(
            B, self.attention_rnn_dim).zero_())
        self.attention_cell = Variable(memory.data.new(
            B, self.attention_rnn_dim).zero_())

        self.decoder_hidden = Variable(memory.data.new(
            B, self.decoder_rnn_dim).zero_())
        self.decoder_cell = Variable(memory.data.new(
            B, self.decoder_rnn_dim).zero_())

        self.attention_weights = Variable(memory.data.new(
            B, MAX_TIME).zero_())
        self.attention_weights_cum = Variable(memory.data.new(
            B, MAX_TIME).zero_())
        self.attention_context = Variable(memory.data.new(
            B, self.encoder_embedding_dim).zero_())

        self.memory = memory
        self.processed_memory = self.attention_layer.memory_layer(memory)
        self.mask = mask

    def parse_decoder_inputs(self, decoder_inputs):
        """ Prepares decoder inputs, i.e. mel outputs
        PARAMS
        ------
        decoder_inputs: inputs used for teacher-forced training, i.e. mel-specs

        RETURNS
        -------
        inputs: processed decoder inputs

        """
        # (B, n_mel_channels, T_out) -> (B, T_out, n_mel_channels)
        decoder_inputs = decoder_inputs.transpose(1, 2)
        # reshape decoder inputs in case we want to work with more than 1 frame per step (chunks). Otherwise, this next
        # line does not just do anything
        decoder_inputs = decoder_inputs.view(
            decoder_inputs.size(0),
            int(decoder_inputs.size(1)/self.n_frames_per_step), -1)
        # (B, T_out, n_mel_channels) -> (T_out, B, n_mel_channels)
        decoder_inputs = decoder_inputs.transpose(0, 1)
        return decoder_inputs

    def parse_decoder_outputs(self, mel_outputs, gate_outputs, alignments):
        """ Prepares decoder outputs for output
        PARAMS
        ------
        mel_outputs:
        gate_outputs: gate output energies
        alignments:

        RETURNS
        -------
        mel_outputs:
        gate_outpust: gate output energies
        alignments:
        """
        # (T_out, B) -> (B, T_out)
        alignments = torch.stack(alignments).transpose(0, 1)
        # (T_out, B) -> (B, T_out)
        gate_outputs = torch.stack(gate_outputs).transpose(0, 1)
        gate_outputs = gate_outputs.contiguous()
        # (T_out, B, n_mel_channels) -> (B, T_out, n_mel_channels)
        mel_outputs = torch.stack(mel_outputs).transpose(0, 1).contiguous()
        # decouple frames per step
        mel_outputs = mel_outputs.view(
            mel_outputs.size(0), -1, self.n_mel_channels)
        # (B, T_out, n_mel_channels) -> (B, n_mel_channels, T_out)
        mel_outputs = mel_outputs.transpose(1, 2)

        return mel_outputs, gate_outputs, alignments

    def decode(self, decoder_input):
        """ Decoder step using stored states, attention and memory
        PARAMS
        ------
        decoder_input: previous mel output

        RETURNS
        -------
        mel_output:
        gate_output: gate output energies
        attention_weights:
        """
        # concatenates [Bx1024] and [Bx512]. All dimensions match except 1 (torch.cat -1)
        # concatenate the i-th decoder hidden state together with the i-th attention context
        cell_input = torch.cat((decoder_input, self.attention_context), -1)
        # the previous input is for the following LSTM cell, initialized with zeroes the hidden states and the cell
        # state.
        # compute the (i+1)th attention hidden state based on the i-th decoder hidden state and attention context.
        self.attention_hidden, self.attention_cell = self.attention_rnn(
            cell_input, (self.attention_hidden, self.attention_cell))
        self.attention_hidden = F.dropout(self.attention_hidden, self.p_attention_dropout, self.training)
        self.attention_cell = F.dropout(self.attention_cell, self.p_attention_dropout, self.training)
        # concatenate the i-th state attention weights together with the cumulated from previous states to compute
        # (i+1)th state
        attention_weights_cat = torch.cat(
            (self.attention_weights.unsqueeze(1),
             self.attention_weights_cum.unsqueeze(1)), dim=1)
        # compute (i+1)th attention context and provide (i+1)th attention weights based on the (i+1)th attention hidden
        # state and (i)th and prev. weights
        self.attention_context, self.attention_weights = self.attention_layer(
            self.attention_hidden, self.memory, self.processed_memory,
            attention_weights_cat, self.mask)

        # cumulate attention_weights adding the (i+1)th to compute (i+2)th state
        self.attention_weights_cum += self.attention_weights

        decoder_input = torch.cat((self.attention_hidden, self.attention_context), -1)
        self.decoder_hidden, self.decoder_cell = self.decoder_rnn(decoder_input,
                                                                  (self.decoder_hidden, self.decoder_cell))
        self.decoder_hidden = F.dropout(self.decoder_hidden, self.p_decoder_dropout, self.training)
        self.decoder_cell = F.dropout(self.decoder_cell, self.p_decoder_dropout, self.training)

        decoder_hidden_attention_context = torch.cat((self.decoder_hidden, self.attention_context), dim=1)
        decoder_output = self.linear_projection(decoder_hidden_attention_context)

        gate_prediction = self.gate_layer(decoder_hidden_attention_context)

        return decoder_output, gate_prediction, self.attention_weights

        """
        # the decoder_output from ith step passes through the pre-net to compute new decoder hidden state and attention_
        # context (i+1)th
        prenet_output = self.prenet(decoder_input)
        # the decoder_input now is the concatenation of the pre-net output and the new (i+1)th attention_context
        decoder_input = torch.cat((prenet_output, self.attention_context), -1)
        # another LSTM Cell to compute the decoder hidden (i+1)th state from the decoder_input
        self.decoder_hidden, self.decoder_cell = self.decoder_rnn(
            decoder_input, (self.decoder_hidden, self.decoder_cell))

        # with new attention_context we concatenate again with the new (i+1)th decoder_hidden state.
        decoder_hidden_attention_context = torch.cat(
            (self.decoder_hidden, self.attention_context), dim=1)
        # the (i+1)th output is a linear projection of the decoder hidden state with a weight matrix plus bias.
        decoder_output = self.linear_projection(
            decoder_hidden_attention_context)
        # check whether (i+1)th state is the last of the sequence
        gate_prediction = self.gate_layer(decoder_hidden_attention_context)
        return decoder_output, gate_prediction, self.attention_weights"""

    def forward(self, memory, decoder_inputs, memory_lengths):
        """ Decoder forward pass for training
        PARAMS
        ------
        memory: Encoder outputs
        decoder_inputs: Decoder inputs for teacher forcing. i.e. mel-specs
        memory_lengths: Encoder output lengths for attention masking.

        RETURNS
        -------
        mel_outputs: mel outputs from the decoder
        gate_outputs: gate outputs from the decoder
        alignments: sequence of attention weights from the decoder
        """

        decoder_input = self.get_go_frame(memory).unsqueeze(0)
        decoder_inputs = self.parse_decoder_inputs(decoder_inputs)
        decoder_inputs = torch.cat((decoder_input, decoder_inputs), dim=0)
        decoder_inputs = self.prenet(decoder_inputs)

        self.initialize_decoder_states(
            memory, mask=~get_mask_from_lengths(memory_lengths))

        mel_outputs, gate_outputs, alignments = [], [], []

        while len(mel_outputs) < decoder_inputs.size(0) - 1:
            decoder_input = decoder_inputs[len(mel_outputs)]
            mel_output, gate_output, attention_weights = self.decode(
                decoder_input)
            # a class list, when += means concatenation of vectors
            mel_outputs += [mel_output.squeeze(1)]
            gate_outputs += [gate_output.squeeze()]
            alignments += [attention_weights]
            # getting the frame indexing from reference mel frames to pass it as the new input of the next decoding
            # step: Teacher Forcing!
            # Takes each time_step of sequences of all mini-batch samples (i.e. [48, 80] as the decoder_inputs is
            # parsed as [189, 48, 80]).

        mel_outputs, gate_outputs, alignments = self.parse_decoder_outputs(
            mel_outputs, gate_outputs, alignments)

        return mel_outputs, gate_outputs, alignments

    def inference(self, memory):
        """ Decoder inference
        PARAMS
        ------
        memory: Encoder outputs

        RETURNS
        -------
        mel_outputs: mel outputs from the decoder
        gate_outputs: gate outputs from the decoder
        alignments: sequence of attention weights from the decoder
        """
        decoder_input = self.get_go_frame(memory)

        self.initialize_decoder_states(memory, mask=None)

        mel_outputs, gate_outputs, alignments = [], [], []
        while True:
            decoder_input = self.prenet(decoder_input)
            mel_output, gate_output, alignment = self.decode(decoder_input)

            mel_outputs += [mel_output.squeeze(1)]
            gate_outputs += [gate_output]
            alignments += [alignment]

            if torch.sigmoid(gate_output.data) > self.gate_threshold:
                break
            elif len(mel_outputs) == self.max_decoder_steps:
                print("Warning! Reached max decoder steps")
                break

            decoder_input = mel_output

        mel_outputs, gate_outputs, alignments = self.parse_decoder_outputs(
            mel_outputs, gate_outputs, alignments)

        return mel_outputs, gate_outputs, alignments