Spaces:
Running
Running
File size: 17,598 Bytes
af7ac2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
import torch
from torch.autograd import Variable
from torch import nn
from torch.nn import functional as F
from nn_layers import linear_module, location_layer
from utils import get_mask_from_lengths
torch.manual_seed(1234)
class AttentionNet(nn.Module):
# 1024, 512, 128, 32, 31
def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
attention_location_n_filters, attention_location_kernel_size):
super(AttentionNet, self).__init__()
self.query_layer = linear_module(attention_rnn_dim, attention_dim,
bias=False, w_init_gain='tanh')
# Projecting inputs into 128-D hidden representation
self.memory_layer = linear_module(embedding_dim, attention_dim, bias=False,
w_init_gain='tanh')
# Projecting into 1-D scalar value
self.v = linear_module(attention_dim, 1, bias=False)
# Convolutional layers to obtain location features and projecting them into 128-D hidden representation
self.location_layer = location_layer(attention_location_n_filters,
attention_location_kernel_size,
attention_dim)
self.score_mask_value = -float("inf")
def get_alignment_energies(self, query, processed_memory,
attention_weights_cat):
"""
PARAMS
------
query: decoder output (batch, n_mel_channels * n_frames_per_step)
processed_memory: processed encoder outputs (B, T_in, attention_dim)
attention_weights_cat: cumulative and prev. att weights (B, 2, max_time)
RETURNS
-------
alignment (batch, max_time)
"""
processed_query = self.query_layer(query.unsqueeze(1))
processed_attention_weights = self.location_layer(attention_weights_cat)
energies = self.v(torch.tanh(
processed_query + processed_attention_weights + processed_memory))
energies = energies.squeeze(-1) # eliminates the third dimension of the tensor, which is 1.
return energies
def forward(self, attention_hidden_state, memory, processed_memory,
attention_weights_cat, mask):
"""
PARAMS
------
attention_hidden_state: attention rnn last output
memory: encoder outputs
processed_memory: processed encoder outputs
attention_weights_cat: previous and cummulative attention weights
mask: binary mask for padded data
"""
alignment = self.get_alignment_energies(
attention_hidden_state, processed_memory, attention_weights_cat)
if mask is not None:
alignment.data.masked_fill_(mask, self.score_mask_value)
attention_weights = F.softmax(alignment, dim=1)
# I think attention_weights is a [BxNUMENCINPUTS] so with unsequeeze(1): [Bx1xNUMENCINPUTS] and memory is
# [BxNUMENCINPUTSx512]
attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
attention_context = attention_context.squeeze(1)
return attention_context, attention_weights
class Prenet(nn.Module):
def __init__(self, in_dim, sizes):
super(Prenet, self).__init__()
in_sizes = [in_dim] + sizes[:-1] # all list values but the last one. The result is a list of the in_dim element
# concatenated with sizes of layers (i.e. [80, 256])
self.layers = nn.ModuleList(
[linear_module(in_size, out_size, bias=False)
for (in_size, out_size) in zip(in_sizes, sizes)])
def forward(self, x):
for linear in self.layers:
x = F.dropout(F.relu(linear(x)), p=0.5, training=True)
return x
class Decoder(nn.Module):
def __init__(self, tacotron_hyperparams):
super(Decoder, self).__init__()
self.n_mel_channels = tacotron_hyperparams['n_mel_channels']
self.n_frames_per_step = tacotron_hyperparams['number_frames_step']
self.encoder_embedding_dim = tacotron_hyperparams['encoder_embedding_dim']
self.attention_rnn_dim = tacotron_hyperparams['attention_rnn_dim'] # 1024
self.decoder_rnn_dim = tacotron_hyperparams['decoder_rnn_dim'] # 1024
self.prenet_dim = tacotron_hyperparams['prenet_dim']
self.max_decoder_steps = tacotron_hyperparams['max_decoder_steps']
# The threshold to decide whether stop or not stop decoding?
self.gate_threshold = tacotron_hyperparams['gate_threshold']
self.p_attention_dropout = tacotron_hyperparams['p_attention_dropout']
self.p_decoder_dropout = tacotron_hyperparams['p_decoder_dropout']
# Define the prenet: there is only one frame per step, so input dim is the number of mel channels.
# There are two fully connected layers:
self.prenet = Prenet(
tacotron_hyperparams['n_mel_channels'] * tacotron_hyperparams['number_frames_step'],
[tacotron_hyperparams['prenet_dim'], tacotron_hyperparams['prenet_dim']])
# input_size: 1024 + 512 (output of first LSTM cell + attention_context) / hidden_size: 1024
self.attention_rnn = nn.LSTMCell(
tacotron_hyperparams['prenet_dim'] + tacotron_hyperparams['encoder_embedding_dim'],
tacotron_hyperparams['attention_rnn_dim'])
# return attention_weights and attention_context. Does the alignments.
self.attention_layer = AttentionNet(
tacotron_hyperparams['attention_rnn_dim'], tacotron_hyperparams['encoder_embedding_dim'],
tacotron_hyperparams['attention_dim'], tacotron_hyperparams['attention_location_n_filters'],
tacotron_hyperparams['attention_location_kernel_size'])
# input_size: 256 + 512 (attention_context + prenet_info), hidden_size: 1024
self.decoder_rnn = nn.LSTMCell(
tacotron_hyperparams['attention_rnn_dim'] + tacotron_hyperparams['encoder_embedding_dim'],
tacotron_hyperparams['decoder_rnn_dim'], 1)
# (LSTM output)1024 + (attention_context)512, out_dim: number of mel channels. Last linear projection that
# generates an output decoder spectral frame.
self.linear_projection = linear_module(
tacotron_hyperparams['decoder_rnn_dim'] + tacotron_hyperparams['encoder_embedding_dim'],
tacotron_hyperparams['n_mel_channels']*tacotron_hyperparams['number_frames_step'])
# decision whether to continue decoding.
self.gate_layer = linear_module(
tacotron_hyperparams['decoder_rnn_dim'] + tacotron_hyperparams['encoder_embedding_dim'], 1,
bias=True, w_init_gain='sigmoid')
def get_go_frame(self, memory):
""" Gets all zeros frames to use as first decoder input
PARAMS
------
memory: decoder outputs
RETURNS
-------
decoder_input: all zeros frames
"""
B = memory.size(0)
decoder_input = Variable(memory.data.new(
B, self.n_mel_channels * self.n_frames_per_step).zero_())
return decoder_input
def initialize_decoder_states(self, memory, mask):
""" Initializes attention rnn states, decoder rnn states, attention
weights, attention cumulative weights, attention context, stores memory
and stores processed memory
PARAMS
------
memory: Encoder outputs
mask: Mask for padded data if training, expects None for inference
"""
B = memory.size(0)
MAX_TIME = memory.size(1)
self.attention_hidden = Variable(memory.data.new(
B, self.attention_rnn_dim).zero_())
self.attention_cell = Variable(memory.data.new(
B, self.attention_rnn_dim).zero_())
self.decoder_hidden = Variable(memory.data.new(
B, self.decoder_rnn_dim).zero_())
self.decoder_cell = Variable(memory.data.new(
B, self.decoder_rnn_dim).zero_())
self.attention_weights = Variable(memory.data.new(
B, MAX_TIME).zero_())
self.attention_weights_cum = Variable(memory.data.new(
B, MAX_TIME).zero_())
self.attention_context = Variable(memory.data.new(
B, self.encoder_embedding_dim).zero_())
self.memory = memory
self.processed_memory = self.attention_layer.memory_layer(memory)
self.mask = mask
def parse_decoder_inputs(self, decoder_inputs):
""" Prepares decoder inputs, i.e. mel outputs
PARAMS
------
decoder_inputs: inputs used for teacher-forced training, i.e. mel-specs
RETURNS
-------
inputs: processed decoder inputs
"""
# (B, n_mel_channels, T_out) -> (B, T_out, n_mel_channels)
decoder_inputs = decoder_inputs.transpose(1, 2)
# reshape decoder inputs in case we want to work with more than 1 frame per step (chunks). Otherwise, this next
# line does not just do anything
decoder_inputs = decoder_inputs.view(
decoder_inputs.size(0),
int(decoder_inputs.size(1)/self.n_frames_per_step), -1)
# (B, T_out, n_mel_channels) -> (T_out, B, n_mel_channels)
decoder_inputs = decoder_inputs.transpose(0, 1)
return decoder_inputs
def parse_decoder_outputs(self, mel_outputs, gate_outputs, alignments):
""" Prepares decoder outputs for output
PARAMS
------
mel_outputs:
gate_outputs: gate output energies
alignments:
RETURNS
-------
mel_outputs:
gate_outpust: gate output energies
alignments:
"""
# (T_out, B) -> (B, T_out)
alignments = torch.stack(alignments).transpose(0, 1)
# (T_out, B) -> (B, T_out)
gate_outputs = torch.stack(gate_outputs).transpose(0, 1)
gate_outputs = gate_outputs.contiguous()
# (T_out, B, n_mel_channels) -> (B, T_out, n_mel_channels)
mel_outputs = torch.stack(mel_outputs).transpose(0, 1).contiguous()
# decouple frames per step
mel_outputs = mel_outputs.view(
mel_outputs.size(0), -1, self.n_mel_channels)
# (B, T_out, n_mel_channels) -> (B, n_mel_channels, T_out)
mel_outputs = mel_outputs.transpose(1, 2)
return mel_outputs, gate_outputs, alignments
def decode(self, decoder_input):
""" Decoder step using stored states, attention and memory
PARAMS
------
decoder_input: previous mel output
RETURNS
-------
mel_output:
gate_output: gate output energies
attention_weights:
"""
# concatenates [Bx1024] and [Bx512]. All dimensions match except 1 (torch.cat -1)
# concatenate the i-th decoder hidden state together with the i-th attention context
cell_input = torch.cat((decoder_input, self.attention_context), -1)
# the previous input is for the following LSTM cell, initialized with zeroes the hidden states and the cell
# state.
# compute the (i+1)th attention hidden state based on the i-th decoder hidden state and attention context.
self.attention_hidden, self.attention_cell = self.attention_rnn(
cell_input, (self.attention_hidden, self.attention_cell))
self.attention_hidden = F.dropout(self.attention_hidden, self.p_attention_dropout, self.training)
self.attention_cell = F.dropout(self.attention_cell, self.p_attention_dropout, self.training)
# concatenate the i-th state attention weights together with the cumulated from previous states to compute
# (i+1)th state
attention_weights_cat = torch.cat(
(self.attention_weights.unsqueeze(1),
self.attention_weights_cum.unsqueeze(1)), dim=1)
# compute (i+1)th attention context and provide (i+1)th attention weights based on the (i+1)th attention hidden
# state and (i)th and prev. weights
self.attention_context, self.attention_weights = self.attention_layer(
self.attention_hidden, self.memory, self.processed_memory,
attention_weights_cat, self.mask)
# cumulate attention_weights adding the (i+1)th to compute (i+2)th state
self.attention_weights_cum += self.attention_weights
decoder_input = torch.cat((self.attention_hidden, self.attention_context), -1)
self.decoder_hidden, self.decoder_cell = self.decoder_rnn(decoder_input,
(self.decoder_hidden, self.decoder_cell))
self.decoder_hidden = F.dropout(self.decoder_hidden, self.p_decoder_dropout, self.training)
self.decoder_cell = F.dropout(self.decoder_cell, self.p_decoder_dropout, self.training)
decoder_hidden_attention_context = torch.cat((self.decoder_hidden, self.attention_context), dim=1)
decoder_output = self.linear_projection(decoder_hidden_attention_context)
gate_prediction = self.gate_layer(decoder_hidden_attention_context)
return decoder_output, gate_prediction, self.attention_weights
"""
# the decoder_output from ith step passes through the pre-net to compute new decoder hidden state and attention_
# context (i+1)th
prenet_output = self.prenet(decoder_input)
# the decoder_input now is the concatenation of the pre-net output and the new (i+1)th attention_context
decoder_input = torch.cat((prenet_output, self.attention_context), -1)
# another LSTM Cell to compute the decoder hidden (i+1)th state from the decoder_input
self.decoder_hidden, self.decoder_cell = self.decoder_rnn(
decoder_input, (self.decoder_hidden, self.decoder_cell))
# with new attention_context we concatenate again with the new (i+1)th decoder_hidden state.
decoder_hidden_attention_context = torch.cat(
(self.decoder_hidden, self.attention_context), dim=1)
# the (i+1)th output is a linear projection of the decoder hidden state with a weight matrix plus bias.
decoder_output = self.linear_projection(
decoder_hidden_attention_context)
# check whether (i+1)th state is the last of the sequence
gate_prediction = self.gate_layer(decoder_hidden_attention_context)
return decoder_output, gate_prediction, self.attention_weights"""
def forward(self, memory, decoder_inputs, memory_lengths):
""" Decoder forward pass for training
PARAMS
------
memory: Encoder outputs
decoder_inputs: Decoder inputs for teacher forcing. i.e. mel-specs
memory_lengths: Encoder output lengths for attention masking.
RETURNS
-------
mel_outputs: mel outputs from the decoder
gate_outputs: gate outputs from the decoder
alignments: sequence of attention weights from the decoder
"""
decoder_input = self.get_go_frame(memory).unsqueeze(0)
decoder_inputs = self.parse_decoder_inputs(decoder_inputs)
decoder_inputs = torch.cat((decoder_input, decoder_inputs), dim=0)
decoder_inputs = self.prenet(decoder_inputs)
self.initialize_decoder_states(
memory, mask=~get_mask_from_lengths(memory_lengths))
mel_outputs, gate_outputs, alignments = [], [], []
while len(mel_outputs) < decoder_inputs.size(0) - 1:
decoder_input = decoder_inputs[len(mel_outputs)]
mel_output, gate_output, attention_weights = self.decode(
decoder_input)
# a class list, when += means concatenation of vectors
mel_outputs += [mel_output.squeeze(1)]
gate_outputs += [gate_output.squeeze()]
alignments += [attention_weights]
# getting the frame indexing from reference mel frames to pass it as the new input of the next decoding
# step: Teacher Forcing!
# Takes each time_step of sequences of all mini-batch samples (i.e. [48, 80] as the decoder_inputs is
# parsed as [189, 48, 80]).
mel_outputs, gate_outputs, alignments = self.parse_decoder_outputs(
mel_outputs, gate_outputs, alignments)
return mel_outputs, gate_outputs, alignments
def inference(self, memory):
""" Decoder inference
PARAMS
------
memory: Encoder outputs
RETURNS
-------
mel_outputs: mel outputs from the decoder
gate_outputs: gate outputs from the decoder
alignments: sequence of attention weights from the decoder
"""
decoder_input = self.get_go_frame(memory)
self.initialize_decoder_states(memory, mask=None)
mel_outputs, gate_outputs, alignments = [], [], []
while True:
decoder_input = self.prenet(decoder_input)
mel_output, gate_output, alignment = self.decode(decoder_input)
mel_outputs += [mel_output.squeeze(1)]
gate_outputs += [gate_output]
alignments += [alignment]
if torch.sigmoid(gate_output.data) > self.gate_threshold:
break
elif len(mel_outputs) == self.max_decoder_steps:
print("Warning! Reached max decoder steps")
break
decoder_input = mel_output
mel_outputs, gate_outputs, alignments = self.parse_decoder_outputs(
mel_outputs, gate_outputs, alignments)
return mel_outputs, gate_outputs, alignments
|