|
from transformers import pipeline |
|
import gradio as gr |
|
import torch |
|
|
|
from examples import * |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
asr = pipeline( |
|
"automatic-speech-recognition", |
|
model="CLiC-UB/Casper", |
|
chunk_length_s=30, |
|
device=device, |
|
) |
|
|
|
|
|
def transcribe_audio(file=None, mic=None): |
|
if mic is not None: |
|
audio = mic |
|
elif file is not None: |
|
audio = file |
|
else: |
|
return "You must either provide a mic recording or a file" |
|
transcription = asr(audio)["text"] |
|
return transcription |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
|
gr.Markdown("<center><h1>CASPER</h1> " |
|
"<h2>Catalan Automatic Speech Recognition using Fine-Tuned Whisper</h2></center>") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
audio_from_microphone = gr.Audio(source="microphone", label="Mic", type="filepath") |
|
audio_from_file = gr.Audio(source="upload", label="File", type="filepath") |
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
asr_btn = gr.Button("Transcribe!") |
|
with gr.Column(scale=0): |
|
cln_btn = gr.ClearButton(value='Clear', components=[audio_from_microphone, audio_from_file]) |
|
with gr.Column(): |
|
output_text = gr.Textbox(label="Generated Transcription") |
|
del_text = gr.ClearButton(value='Delete Text', components=output_text) |
|
gr.Markdown("<sub>NOTE: This model does not generate punctuation and casing</sub>") |
|
|
|
asr_btn.click(fn=transcribe_audio, |
|
inputs=[audio_from_file, audio_from_microphone], |
|
outputs=output_text) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown("### Audio Examples") |
|
gr.Examples(examples=infer_from_audio_examples, |
|
label="From Catalan Google TTS dataset", |
|
inputs=[audio_from_file, audio_from_microphone], |
|
outputs=output_text, |
|
fn=transcribe_audio, |
|
cache_examples=True, ) |
|
gr.Markdown("### More Details") |
|
gr.Markdown("The model used is a small version of the Whisper architecture. " |
|
"Please, find more details about it in this [link](https://huggingface.co/openai/whisper-small) <br>" |
|
"Whisper has been fine-tuned using the catalan CommonVoice v.11 and the ParlamentParla datasets. " |
|
"More information about results and evaluation can be found in " |
|
"[here](https://huggingface.co/MaximilianChen/Casper)") |
|
|
|
demo.launch() |
|
|