Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,63 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
)
|
58 |
],
|
|
|
|
|
59 |
)
|
60 |
|
61 |
-
|
62 |
-
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from unsloth import FastLanguageModel
|
3 |
+
from transformers import TextStreamer
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Function to load the model
|
7 |
+
def load_model(model_name, max_seq_length, dtype, load_in_4bit, token=None):
|
8 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
9 |
+
model_name=model_name,
|
10 |
+
max_seq_length=max_seq_length,
|
11 |
+
dtype=dtype,
|
12 |
+
load_in_4bit=load_in_4bit,
|
13 |
+
token=token
|
14 |
+
)
|
15 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
16 |
+
return model, tokenizer
|
17 |
+
|
18 |
+
# Load the model
|
19 |
+
model_name = "unsloth/Phi-3-mini-4k-instruct"
|
20 |
+
token = None # Replace with your token if required
|
21 |
+
|
22 |
+
model, tokenizer = load_model(model_name, max_seq_length=2048, dtype=None, load_in_4bit=True, token=token)
|
23 |
+
|
24 |
+
def generate_response(instruction, input_text, max_new_tokens):
|
25 |
+
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
26 |
+
|
27 |
+
### Instruction:
|
28 |
+
{}
|
29 |
+
|
30 |
+
### Input:
|
31 |
+
{}
|
32 |
+
|
33 |
+
### Response:
|
34 |
+
{}"""
|
35 |
+
|
36 |
+
inputs = tokenizer(
|
37 |
+
[
|
38 |
+
alpaca_prompt.format(
|
39 |
+
instruction, # instruction
|
40 |
+
input_text, # input
|
41 |
+
"" # output - leave this blank for generation!
|
42 |
+
)
|
43 |
+
], return_tensors="pt").to("cuda")
|
44 |
+
|
45 |
+
text_streamer = TextStreamer(tokenizer)
|
46 |
+
output = model.generate(**inputs, streamer=text_streamer, max_new_tokens=max_new_tokens)
|
47 |
+
|
48 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
49 |
+
return response
|
50 |
+
|
51 |
+
# Gradio Interface
|
52 |
+
iface = gr.Interface(
|
53 |
+
fn=generate_response,
|
54 |
+
inputs=[
|
55 |
+
gr.Textbox(lines=2, label="Instruction", placeholder="Continue the Fibonacci sequence."),
|
56 |
+
gr.Textbox(lines=2, label="Input", placeholder="1, 1, 2, 3, 5, 8"),
|
57 |
+
gr.Slider(1, 2048, value=128, step=1, label="Max New Tokens")
|
58 |
],
|
59 |
+
outputs=gr.Textbox(label="Response", lines=10),
|
60 |
+
title="Language Model Chat UI"
|
61 |
)
|
62 |
|
63 |
+
iface.launch()
|
|
|
|