1 / training /eval_lib.py
CHEN11102's picture
Upload 47 files
708d62c verified
# Copyright 2022 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# https://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Evaluation library for frame interpolation."""
from typing import Dict, Mapping, Text
from absl import logging
import tensorflow as tf
def _collect_tensors(tensors: tf.Tensor) -> tf.Tensor:
"""Collect tensors of the different replicas into a list."""
return tf.nest.flatten(tensors, expand_composites=True)
@tf.function
def _distributed_eval_step(strategy: tf.distribute.Strategy,
batch: Dict[Text, tf.Tensor], model: tf.keras.Model,
metrics: Dict[Text, tf.keras.metrics.Metric],
checkpoint_step: int) -> Dict[Text, tf.Tensor]:
"""Distributed eval step.
Args:
strategy: A Tensorflow distribution strategy.
batch: A batch of training examples.
model: The Keras model to evaluate.
metrics: The Keras metrics used for evaluation (a dictionary).
checkpoint_step: The iteration number at which the checkpoint is restored.
Returns:
list of predictions from each replica.
"""
def _eval_step(
batch: Dict[Text, tf.Tensor]) -> Dict[Text, tf.Tensor]:
"""Eval for one step."""
predictions = model(batch, training=False)
# Note: these metrics expect batch and prediction dictionaries rather than
# tensors like standard TF metrics do. This allows our losses and metrics to
# use a richer set of inputs than just the predicted final image.
for metric in metrics.values():
metric.update_state(batch, predictions, checkpoint_step=checkpoint_step)
return predictions
return strategy.run(_eval_step, args=(batch,))
def _summarize_image_tensors(combined, prefix, step):
for name in combined:
image = combined[name]
if isinstance(image, tf.Tensor):
if len(image.shape) == 4 and (image.shape[-1] == 1 or
image.shape[-1] == 3):
tf.summary.image(prefix + '/' + name, image, step=step)
def eval_loop(strategy: tf.distribute.Strategy,
eval_base_folder: str,
model: tf.keras.Model,
metrics: Dict[str, tf.keras.metrics.Metric],
datasets: Mapping[str, tf.data.Dataset],
summary_writer: tf.summary.SummaryWriter,
checkpoint_step: int):
"""Eval function that is strategy agnostic.
Args:
strategy: A Tensorflow distributed strategy.
eval_base_folder: A path to where the summaries event files and
checkpoints will be saved.
model: A function that returns the model.
metrics: A function that returns the metrics dictionary.
datasets: A dict of tf.data.Dataset to evaluate on.
summary_writer: Eval summary writer.
checkpoint_step: The number of iterations completed.
"""
logging.info('Saving eval summaries to: %s...', eval_base_folder)
summary_writer.set_as_default()
for dataset_name, dataset in datasets.items():
for metric in metrics.values():
metric.reset_states()
logging.info('Loading %s testing data ...', dataset_name)
dataset = strategy.experimental_distribute_dataset(dataset)
logging.info('Evaluating %s ...', dataset_name)
batch_idx = 0
max_batches_to_summarize = 10
for batch in dataset:
predictions = _distributed_eval_step(strategy, batch, model, metrics,
checkpoint_step)
# Clip interpolator output to [0,1]. Clipping is done only
# on the eval loop to get better metrics, but not on the training loop
# so gradients are not killed.
if strategy.num_replicas_in_sync > 1:
predictions = {
'image': tf.concat(predictions['image'].values, axis=0)
}
predictions['image'] = tf.clip_by_value(predictions['image'], 0., 1.)
if batch_idx % 10 == 0:
logging.info('Evaluating batch %s', batch_idx)
batch_idx = batch_idx + 1
if batch_idx < max_batches_to_summarize:
# Loop through the global batch:
prefix = f'{dataset_name}/eval_{batch_idx}'
# Find all tensors that look like images, and summarize:
combined = {**batch, **predictions}
_summarize_image_tensors(combined, prefix, step=checkpoint_step)
elif batch_idx == max_batches_to_summarize:
tf.summary.flush()
for name, metric in metrics.items():
tf.summary.scalar(
f'{dataset_name}/{name}', metric.result(), step=checkpoint_step)
tf.summary.flush()
logging.info('Step {:2}, {} {}'.format(checkpoint_step,
f'{dataset_name}/{name}',
metric.result().numpy()))
metric.reset_states()