1
File size: 4,756 Bytes
708d62c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright 2022 Google LLC

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     https://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""The training loop for frame interpolation.

gin_config: The gin configuration file containing model, losses and datasets.

To run on GPUs:
  python3 -m frame_interpolation.training.train \
      --gin_config <path to  network.gin> \
      --base_folder <base folder for all training runs> \
      --label <descriptive label for the run>

To debug the training loop on CPU:
  python3 -m frame_interpolation.training.train \
      --gin_config <path to config.gin> \
      --base_folder /tmp
      --label test_run \
      --mode cpu

The training output directory will be created at <base_folder>/<label>.
"""
import os

from . import augmentation_lib
from . import data_lib
from . import eval_lib
from . import metrics_lib
from . import model_lib
from . import train_lib
from absl import app
from absl import flags
from absl import logging
import gin.tf
from ..losses import losses

# Reduce tensorflow logs to ERRORs only.
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf  # pylint: disable=g-import-not-at-top
tf.get_logger().setLevel('ERROR')


_GIN_CONFIG = flags.DEFINE_string('gin_config', None, 'Gin config file.')
_LABEL = flags.DEFINE_string('label', 'run0',
                             'Descriptive label for this run.')
_BASE_FOLDER = flags.DEFINE_string('base_folder', None,
                                   'Path to checkpoints/summaries.')
_MODE = flags.DEFINE_enum('mode', 'gpu', ['cpu', 'gpu'],
                          'Distributed strategy approach.')


@gin.configurable('training')
class TrainingOptions(object):
  """Training-related options."""

  def __init__(self, learning_rate: float, learning_rate_decay_steps: int,
               learning_rate_decay_rate: int, learning_rate_staircase: int,
               num_steps: int):
    self.learning_rate = learning_rate
    self.learning_rate_decay_steps = learning_rate_decay_steps
    self.learning_rate_decay_rate = learning_rate_decay_rate
    self.learning_rate_staircase = learning_rate_staircase
    self.num_steps = num_steps


def main(argv):
  if len(argv) > 1:
    raise app.UsageError('Too many command-line arguments.')

  output_dir = os.path.join(_BASE_FOLDER.value, _LABEL.value)
  logging.info('Creating output_dir @ %s ...', output_dir)

  # Copy config file to <base_folder>/<label>/config.gin.
  tf.io.gfile.makedirs(output_dir)
  tf.io.gfile.copy(
      _GIN_CONFIG.value, os.path.join(output_dir, 'config.gin'), overwrite=True)

  gin.external_configurable(
      tf.keras.optimizers.schedules.PiecewiseConstantDecay,
      module='tf.keras.optimizers.schedules')

  gin_configs = [_GIN_CONFIG.value]
  gin.parse_config_files_and_bindings(
      config_files=gin_configs, bindings=None, skip_unknown=True)

  training_options = TrainingOptions()  # pylint: disable=no-value-for-parameter

  learning_rate = tf.keras.optimizers.schedules.ExponentialDecay(
      training_options.learning_rate,
      training_options.learning_rate_decay_steps,
      training_options.learning_rate_decay_rate,
      training_options.learning_rate_staircase,
      name='learning_rate')

  # Initialize data augmentation functions
  augmentation_fns = augmentation_lib.data_augmentations()

  saved_model_folder = os.path.join(_BASE_FOLDER.value, _LABEL.value,
                                    'saved_model')
  train_folder = os.path.join(_BASE_FOLDER.value, _LABEL.value, 'train')
  eval_folder = os.path.join(_BASE_FOLDER.value, _LABEL.value, 'eval')

  train_lib.train(
      strategy=train_lib.get_strategy(_MODE.value),
      train_folder=train_folder,
      saved_model_folder=saved_model_folder,
      n_iterations=training_options.num_steps,
      create_model_fn=model_lib.create_model,
      create_losses_fn=losses.training_losses,
      create_metrics_fn=metrics_lib.create_metrics_fn,
      dataset=data_lib.create_training_dataset(
          augmentation_fns=augmentation_fns),
      learning_rate=learning_rate,
      eval_loop_fn=eval_lib.eval_loop,
      eval_folder=eval_folder,
      eval_datasets=data_lib.create_eval_datasets() or None)


if __name__ == '__main__':
  app.run(main)