Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import numpy as np
|
2 |
import pandas as pd
|
3 |
import statsmodels.formula.api as smf
|
4 |
import statsmodels.api as sm
|
@@ -10,16 +10,29 @@ from scipy.stats import t, f
|
|
10 |
import gradio as gr
|
11 |
import io
|
12 |
import zipfile
|
13 |
-
from
|
14 |
|
15 |
class RSM_BoxBehnken:
|
16 |
def __init__(self, data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
self.data = data.copy()
|
18 |
self.model = None
|
19 |
self.model_simplified = None
|
20 |
self.optimized_results = None
|
21 |
self.optimal_levels = None
|
22 |
-
|
23 |
self.x1_name = x1_name
|
24 |
self.x2_name = x2_name
|
25 |
self.x3_name = x3_name
|
@@ -29,14 +42,6 @@ class RSM_BoxBehnken:
|
|
29 |
self.x1_levels = x1_levels
|
30 |
self.x2_levels = x2_levels
|
31 |
self.x3_levels = x3_levels
|
32 |
-
|
33 |
-
# Formatear datos num茅ricos a 3 decimales
|
34 |
-
self.format_data()
|
35 |
-
|
36 |
-
def format_data(self):
|
37 |
-
"""Formatea los datos num茅ricos a 3 decimales."""
|
38 |
-
numeric_cols = self.data.select_dtypes(include=np.number).columns
|
39 |
-
self.data[numeric_cols] = self.data[numeric_cols].round(3)
|
40 |
|
41 |
def get_levels(self, variable_name):
|
42 |
"""
|
@@ -99,21 +104,21 @@ class RSM_BoxBehnken:
|
|
99 |
|
100 |
self.optimized_results = minimize(objective_function, x0, method=method, bounds=bounds)
|
101 |
self.optimal_levels = self.optimized_results.x
|
102 |
-
|
103 |
# Convertir niveles 贸ptimos de codificados a naturales
|
104 |
optimal_levels_natural = [
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
]
|
109 |
# Crear la tabla de optimizaci贸n
|
110 |
optimization_table = pd.DataFrame({
|
111 |
'Variable': [self.x1_name, self.x2_name, self.x3_name],
|
112 |
'Nivel 脫ptimo (Natural)': optimal_levels_natural,
|
113 |
-
'Nivel 脫ptimo (Codificado)':
|
114 |
})
|
115 |
|
116 |
-
return optimization_table
|
117 |
|
118 |
def plot_rsm_individual(self, fixed_variable, fixed_level):
|
119 |
"""
|
@@ -205,15 +210,15 @@ class RSM_BoxBehnken:
|
|
205 |
|
206 |
# A帽adir los puntos de los experimentos en la superficie de respuesta con diferentes colores y etiquetas
|
207 |
# Crear una lista de colores y etiquetas para los puntos
|
208 |
-
colors =
|
209 |
point_labels = []
|
210 |
for i, row in experiments_data.iterrows():
|
211 |
-
point_labels.append(f"{row[self.y_name]:.3f}")
|
212 |
|
213 |
fig.add_trace(go.Scatter3d(
|
214 |
x=experiments_x_natural,
|
215 |
y=experiments_y_natural,
|
216 |
-
z=experiments_data[self.y_name],
|
217 |
mode='markers+text',
|
218 |
marker=dict(size=4, color=colors[:len(experiments_x_natural)]), # Usar colores de la lista
|
219 |
text=point_labels, # Usar las etiquetas creadas
|
@@ -224,13 +229,9 @@ class RSM_BoxBehnken:
|
|
224 |
# A帽adir etiquetas y t铆tulo con variables naturales
|
225 |
fig.update_layout(
|
226 |
scene=dict(
|
227 |
-
xaxis_title=varying_variables[0]
|
228 |
-
yaxis_title=varying_variables[1]
|
229 |
zaxis_title=self.y_name,
|
230 |
-
# Puedes mantener la configuraci贸n de grid en los planos si lo deseas
|
231 |
-
# xaxis=dict(showgrid=True, gridwidth=1, gridcolor='lightgray'),
|
232 |
-
# yaxis=dict(showgrid=True, gridwidth=1, gridcolor='lightgray'),
|
233 |
-
# zaxis=dict(showgrid=True, gridwidth=1, gridcolor='lightgray')
|
234 |
),
|
235 |
title=f"{self.y_name} vs {varying_variables[0]} y {varying_variables[1]}<br><sup>{fixed_variable} fijo en {fixed_level:.3f} (g/L) (Modelo Simplificado)</sup>",
|
236 |
height=800,
|
@@ -242,10 +243,13 @@ class RSM_BoxBehnken:
|
|
242 |
def generate_all_plots(self):
|
243 |
"""
|
244 |
Genera todas las gr谩ficas de RSM, variando la variable fija y sus niveles usando el modelo simplificado.
|
|
|
245 |
"""
|
246 |
if self.model_simplified is None:
|
247 |
print("Error: Ajusta el modelo simplificado primero.")
|
248 |
-
return
|
|
|
|
|
249 |
|
250 |
# Niveles naturales para graficar
|
251 |
levels_to_plot_natural = {
|
@@ -254,14 +258,12 @@ class RSM_BoxBehnken:
|
|
254 |
self.x3_name: self.x3_levels
|
255 |
}
|
256 |
|
257 |
-
# Generar gr谩ficos individuales
|
258 |
-
figures = []
|
259 |
for fixed_variable in [self.x1_name, self.x2_name, self.x3_name]:
|
260 |
for level in levels_to_plot_natural[fixed_variable]:
|
261 |
fig = self.plot_rsm_individual(fixed_variable, level)
|
262 |
if fig is not None:
|
263 |
-
|
264 |
-
return figures
|
265 |
|
266 |
def coded_to_natural(self, coded_value, variable_name):
|
267 |
"""Convierte un valor codificado a su valor natural."""
|
@@ -296,7 +298,7 @@ class RSM_BoxBehnken:
|
|
296 |
|
297 |
# Crear el diagrama de Pareto
|
298 |
fig = px.bar(
|
299 |
-
x=sorted_tvalues,
|
300 |
y=sorted_names,
|
301 |
orientation='h',
|
302 |
labels={'x': 'Efecto Estandarizado', 'y': 'T茅rmino'},
|
@@ -324,76 +326,76 @@ class RSM_BoxBehnken:
|
|
324 |
|
325 |
for term, coef in coefficients.items():
|
326 |
if term != 'Intercept':
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
|
340 |
return equation
|
341 |
|
342 |
def generate_prediction_table(self):
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
|
350 |
-
|
351 |
-
|
352 |
|
353 |
-
|
354 |
|
355 |
def calculate_contribution_percentage(self):
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
|
398 |
def calculate_detailed_anova(self):
|
399 |
"""
|
@@ -419,7 +421,7 @@ class RSM_BoxBehnken:
|
|
419 |
df_total = len(self.data) - 1
|
420 |
|
421 |
# 5. Suma de cuadrados de la regresi贸n
|
422 |
-
ss_regression = anova_reduced['sum_sq'][:-1].sum()
|
423 |
|
424 |
# 6. Grados de libertad de la regresi贸n
|
425 |
df_regression = len(anova_reduced) - 1
|
@@ -430,31 +432,35 @@ class RSM_BoxBehnken:
|
|
430 |
|
431 |
# 8. Suma de cuadrados del error puro (se calcula a partir de las r茅plicas)
|
432 |
replicas = self.data[self.data.duplicated(subset=[self.x1_name, self.x2_name, self.x3_name], keep=False)]
|
433 |
-
|
434 |
-
|
|
|
|
|
|
|
|
|
435 |
|
436 |
# 9. Suma de cuadrados de la falta de ajuste
|
437 |
-
ss_lack_of_fit = ss_residual - ss_pure_error
|
438 |
-
df_lack_of_fit = df_residual - df_pure_error
|
439 |
|
440 |
# 10. Cuadrados medios
|
441 |
ms_regression = ss_regression / df_regression
|
442 |
ms_residual = ss_residual / df_residual
|
443 |
-
ms_lack_of_fit = ss_lack_of_fit / df_lack_of_fit
|
444 |
-
ms_pure_error = ss_pure_error / df_pure_error
|
445 |
|
446 |
# 11. Estad铆stico F y valor p para la falta de ajuste
|
447 |
-
f_lack_of_fit = ms_lack_of_fit / ms_pure_error
|
448 |
-
p_lack_of_fit = 1 - f.cdf(f_lack_of_fit, df_lack_of_fit, df_pure_error)
|
449 |
|
450 |
# 12. Crear la tabla ANOVA detallada
|
451 |
detailed_anova_table = pd.DataFrame({
|
452 |
'Fuente de Variaci贸n': ['Regresi贸n', 'Residual', 'Falta de Ajuste', 'Error Puro', 'Total'],
|
453 |
-
'Suma de Cuadrados': [
|
454 |
'Grados de Libertad': [df_regression, df_residual, df_lack_of_fit, df_pure_error, df_total],
|
455 |
-
'Cuadrado Medio': [
|
456 |
-
'F': [np.nan, np.nan,
|
457 |
-
'Valor p': [np.nan, np.nan,
|
458 |
})
|
459 |
|
460 |
# Calcular la suma de cuadrados y grados de libertad para la curvatura
|
@@ -462,7 +468,7 @@ class RSM_BoxBehnken:
|
|
462 |
df_curvature = 3
|
463 |
|
464 |
# A帽adir la fila de curvatura a la tabla ANOVA
|
465 |
-
detailed_anova_table.loc[len(detailed_anova_table)] = ['Curvatura',
|
466 |
|
467 |
# Reorganizar las filas para que la curvatura aparezca despu茅s de la regresi贸n
|
468 |
detailed_anova_table = detailed_anova_table.reindex([0, 5, 1, 2, 3, 4])
|
@@ -470,7 +476,51 @@ class RSM_BoxBehnken:
|
|
470 |
# Resetear el 铆ndice para que sea consecutivo
|
471 |
detailed_anova_table = detailed_anova_table.reset_index(drop=True)
|
472 |
|
473 |
-
return detailed_anova_table
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
474 |
|
475 |
# --- Funciones para la interfaz de Gradio ---
|
476 |
|
@@ -489,7 +539,7 @@ def load_data(x1_name, x2_name, x3_name, y_name, x1_levels_str, x2_levels_str, x
|
|
489 |
data_str (str): Datos del experimento en formato CSV, separados por comas.
|
490 |
|
491 |
Returns:
|
492 |
-
tuple: (pd.DataFrame, str, str, str, str, list, list, list, gr.update
|
493 |
"""
|
494 |
try:
|
495 |
# Convertir los niveles a listas de n煤meros
|
@@ -511,15 +561,16 @@ def load_data(x1_name, x2_name, x3_name, y_name, x1_levels_str, x2_levels_str, x
|
|
511 |
global rsm
|
512 |
rsm = RSM_BoxBehnken(data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels)
|
513 |
|
514 |
-
return data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels, gr.update(visible=True)
|
515 |
-
|
516 |
except Exception as e:
|
517 |
return None, "", "", "", "", [], [], [], gr.update(visible=False), f"Error: {e}"
|
518 |
|
519 |
-
def fit_and_optimize_model(
|
520 |
if 'rsm' not in globals():
|
521 |
-
return
|
522 |
|
|
|
523 |
model_completo, pareto_completo = rsm.fit_model()
|
524 |
model_simplificado, pareto_simplificado = rsm.fit_simplified_model()
|
525 |
optimization_table = rsm.optimize()
|
@@ -527,18 +578,17 @@ def fit_and_optimize_model(rsm_plots_state=None):
|
|
527 |
prediction_table = rsm.generate_prediction_table()
|
528 |
contribution_table = rsm.calculate_contribution_percentage()
|
529 |
anova_table = rsm.calculate_detailed_anova()
|
530 |
-
|
531 |
-
# Generar
|
532 |
-
|
533 |
-
|
534 |
# Formatear la ecuaci贸n para que se vea mejor en Markdown
|
535 |
equation_formatted = equation.replace(" + ", "<br>+ ").replace(" ** ", "^").replace("*", " 脳 ")
|
536 |
equation_formatted = f"### Ecuaci贸n del Modelo Simplificado:<br>{equation_formatted}"
|
537 |
|
538 |
return (
|
539 |
-
model_completo.summary().
|
540 |
pareto_completo,
|
541 |
-
model_completo.summary().tables[1].as_html(),
|
542 |
model_simplificado.summary().as_html(),
|
543 |
pareto_simplificado,
|
544 |
equation_formatted,
|
@@ -546,73 +596,106 @@ def fit_and_optimize_model(rsm_plots_state=None):
|
|
546 |
prediction_table,
|
547 |
contribution_table,
|
548 |
anova_table,
|
549 |
-
|
550 |
-
gr.update(
|
551 |
)
|
552 |
|
553 |
-
def generate_rsm_plot(
|
554 |
-
if not
|
555 |
-
return None,
|
556 |
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
563 |
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
def download_selected_image(plot_index, rsm_plots_state):
|
583 |
-
if not rsm_plots_state:
|
584 |
-
return "Error: Genera los gr谩ficos primero."
|
585 |
-
|
586 |
-
plot_index = int(plot_index)
|
587 |
-
if 0 <= plot_index < len(rsm_plots_state):
|
588 |
-
selected_plot = rsm_plots_state[plot_index]
|
589 |
-
img_bytes = selected_plot.to_image(format="png")
|
590 |
-
b64 = b64encode(img_bytes).decode('utf-8')
|
591 |
-
href = f'<a download="grafico_rsm_{plot_index}.png" href="data:image/png;base64,{b64}">Descargar Gr谩fico {plot_index}</a>'
|
592 |
-
return href
|
593 |
else:
|
594 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
595 |
|
596 |
-
def
|
597 |
-
|
598 |
-
|
599 |
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
|
|
|
|
|
|
610 |
|
611 |
# --- Crear la interfaz de Gradio ---
|
612 |
|
613 |
with gr.Blocks() as demo:
|
614 |
gr.Markdown("# Optimizaci贸n de la producci贸n de AIA usando RSM Box-Behnken")
|
615 |
-
|
616 |
with gr.Row():
|
617 |
with gr.Column():
|
618 |
gr.Markdown("## Configuraci贸n del Dise帽o")
|
@@ -623,7 +706,7 @@ with gr.Blocks() as demo:
|
|
623 |
x1_levels_input = gr.Textbox(label="Niveles de X1 (separados por comas)", value="1, 3.5, 5.5")
|
624 |
x2_levels_input = gr.Textbox(label="Niveles de X2 (separados por comas)", value="0.03, 0.2, 0.3")
|
625 |
x3_levels_input = gr.Textbox(label="Niveles de X3 (separados por comas)", value="0.4, 0.65, 0.9")
|
626 |
-
data_input = gr.Textbox(label="Datos del Experimento (formato CSV)", lines=
|
627 |
2,1,-1,0,177.557
|
628 |
3,-1,1,0,127.261
|
629 |
4,1,1,0,147.573
|
@@ -639,112 +722,150 @@ with gr.Blocks() as demo:
|
|
639 |
14,0,0,0,297.238
|
640 |
15,0,0,0,280.896""")
|
641 |
load_button = gr.Button("Cargar Datos")
|
642 |
-
|
643 |
-
|
644 |
with gr.Column():
|
645 |
gr.Markdown("## Datos Cargados")
|
646 |
-
data_output = gr.Dataframe(label="Tabla de Datos")
|
647 |
-
|
648 |
-
#
|
649 |
-
rsm_plots_state = gr.State([])
|
650 |
-
|
651 |
-
# Hacer que la secci贸n de an谩lisis y gr谩ficos sea visible solo despu茅s de cargar los datos
|
652 |
with gr.Row(visible=False) as analysis_row:
|
653 |
with gr.Column():
|
654 |
fit_button = gr.Button("Ajustar Modelo y Optimizar")
|
655 |
gr.Markdown("**Modelo Completo**")
|
656 |
-
|
657 |
-
|
658 |
-
pareto_completo_output = gr.Plot(label="Pareto Modelo Completo")
|
659 |
-
model_completo_output2 = gr.HTML(label="Tabla de ANOVA")
|
660 |
gr.Markdown("**Modelo Simplificado**")
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
equation_output = gr.HTML(
|
665 |
-
optimization_table_output = gr.Dataframe(label="Tabla de Optimizaci贸n")
|
666 |
-
prediction_table_output = gr.Dataframe(label="Tabla de Predicciones")
|
667 |
-
contribution_table_output = gr.Dataframe(label="Tabla de % de Contribuci贸n")
|
668 |
-
anova_table_output = gr.Dataframe(label="Tabla ANOVA Detallada")
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
download_all_images_button = gr.HTML("Descargar Todos los Gr谩ficos")
|
673 |
-
|
674 |
with gr.Column():
|
675 |
-
gr.Markdown("## Gr谩ficos de Superficie de Respuesta")
|
|
|
|
|
|
|
676 |
with gr.Row():
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
|
|
684 |
load_button.click(
|
685 |
load_data,
|
686 |
inputs=[x1_name_input, x2_name_input, x3_name_input, y_name_input, x1_levels_input, x2_levels_input, x3_levels_input, data_input],
|
687 |
outputs=[data_output, x1_name_input, x2_name_input, x3_name_input, y_name_input, x1_levels_input, x2_levels_input, x3_levels_input, analysis_row]
|
688 |
)
|
689 |
-
|
690 |
fit_button.click(
|
691 |
-
fit_and_optimize_model,
|
692 |
-
inputs=
|
693 |
outputs=[
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
plot_index_slider
|
706 |
]
|
707 |
)
|
708 |
-
|
709 |
-
|
710 |
-
lambda
|
711 |
-
inputs=
|
712 |
-
outputs=
|
713 |
-
).then(
|
714 |
-
generate_rsm_plot,
|
715 |
-
inputs=[plot_index_slider, rsm_plots_state],
|
716 |
-
outputs=[rsm_plot_output, plot_index_slider, gr.Textbox()]
|
717 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
718 |
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
generate_rsm_plot,
|
725 |
-
inputs=[plot_index_slider, rsm_plots_state],
|
726 |
-
outputs=[rsm_plot_output, plot_index_slider, gr.Textbox()]
|
727 |
)
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
inputs=[
|
732 |
-
outputs=[rsm_plot_output,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
733 |
)
|
734 |
|
735 |
-
download_excel_button.click(download_excel, outputs=download_excel_button)
|
736 |
-
download_image_button.click(download_selected_image, inputs=[plot_index_slider, rsm_plots_state], outputs=download_image_button)
|
737 |
-
download_all_images_button.click(download_all_images, inputs=[rsm_plots_state], outputs=download_all_images_button)
|
738 |
-
|
739 |
# Ejemplo de uso
|
740 |
gr.Markdown("## Ejemplo de uso")
|
741 |
-
gr.Markdown("
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
|
|
|
|
|
|
750 |
demo.launch()
|
|
|
1 |
+
import numpy as np
|
2 |
import pandas as pd
|
3 |
import statsmodels.formula.api as smf
|
4 |
import statsmodels.api as sm
|
|
|
10 |
import gradio as gr
|
11 |
import io
|
12 |
import zipfile
|
13 |
+
from datetime import datetime
|
14 |
|
15 |
class RSM_BoxBehnken:
|
16 |
def __init__(self, data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels):
|
17 |
+
"""
|
18 |
+
Inicializa la clase con los datos del dise帽o Box-Behnken.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
data (pd.DataFrame): DataFrame con los datos del experimento.
|
22 |
+
x1_name (str): Nombre de la primera variable independiente.
|
23 |
+
x2_name (str): Nombre de la segunda variable independiente.
|
24 |
+
x3_name (str): Nombre de la tercera variable independiente.
|
25 |
+
y_name (str): Nombre de la variable dependiente.
|
26 |
+
x1_levels (list): Niveles de la primera variable independiente.
|
27 |
+
x2_levels (list): Niveles de la segunda variable independiente.
|
28 |
+
x3_levels (list): Niveles de la tercera variable independiente.
|
29 |
+
"""
|
30 |
self.data = data.copy()
|
31 |
self.model = None
|
32 |
self.model_simplified = None
|
33 |
self.optimized_results = None
|
34 |
self.optimal_levels = None
|
35 |
+
self.all_figures = [] # Lista para almacenar las 9 figuras
|
36 |
self.x1_name = x1_name
|
37 |
self.x2_name = x2_name
|
38 |
self.x3_name = x3_name
|
|
|
42 |
self.x1_levels = x1_levels
|
43 |
self.x2_levels = x2_levels
|
44 |
self.x3_levels = x3_levels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
def get_levels(self, variable_name):
|
47 |
"""
|
|
|
104 |
|
105 |
self.optimized_results = minimize(objective_function, x0, method=method, bounds=bounds)
|
106 |
self.optimal_levels = self.optimized_results.x
|
107 |
+
|
108 |
# Convertir niveles 贸ptimos de codificados a naturales
|
109 |
optimal_levels_natural = [
|
110 |
+
self.coded_to_natural(self.optimal_levels[0], self.x1_name),
|
111 |
+
self.coded_to_natural(self.optimal_levels[1], self.x2_name),
|
112 |
+
self.coded_to_natural(self.optimal_levels[2], self.x3_name)
|
113 |
]
|
114 |
# Crear la tabla de optimizaci贸n
|
115 |
optimization_table = pd.DataFrame({
|
116 |
'Variable': [self.x1_name, self.x2_name, self.x3_name],
|
117 |
'Nivel 脫ptimo (Natural)': optimal_levels_natural,
|
118 |
+
'Nivel 脫ptimo (Codificado)': self.optimal_levels.round(3) # Redondear a 3 decimales
|
119 |
})
|
120 |
|
121 |
+
return optimization_table.round(3) # Redondear a 3 decimales
|
122 |
|
123 |
def plot_rsm_individual(self, fixed_variable, fixed_level):
|
124 |
"""
|
|
|
210 |
|
211 |
# A帽adir los puntos de los experimentos en la superficie de respuesta con diferentes colores y etiquetas
|
212 |
# Crear una lista de colores y etiquetas para los puntos
|
213 |
+
colors = px.colors.qualitative.Safe
|
214 |
point_labels = []
|
215 |
for i, row in experiments_data.iterrows():
|
216 |
+
point_labels.append(f"{row[self.y_name]:.3f}") # Redondear a 3 decimales
|
217 |
|
218 |
fig.add_trace(go.Scatter3d(
|
219 |
x=experiments_x_natural,
|
220 |
y=experiments_y_natural,
|
221 |
+
z=experiments_data[self.y_name].round(3),
|
222 |
mode='markers+text',
|
223 |
marker=dict(size=4, color=colors[:len(experiments_x_natural)]), # Usar colores de la lista
|
224 |
text=point_labels, # Usar las etiquetas creadas
|
|
|
229 |
# A帽adir etiquetas y t铆tulo con variables naturales
|
230 |
fig.update_layout(
|
231 |
scene=dict(
|
232 |
+
xaxis_title=f"{varying_variables[0]} (g/L)",
|
233 |
+
yaxis_title=f"{varying_variables[1]} (g/L)",
|
234 |
zaxis_title=self.y_name,
|
|
|
|
|
|
|
|
|
235 |
),
|
236 |
title=f"{self.y_name} vs {varying_variables[0]} y {varying_variables[1]}<br><sup>{fixed_variable} fijo en {fixed_level:.3f} (g/L) (Modelo Simplificado)</sup>",
|
237 |
height=800,
|
|
|
243 |
def generate_all_plots(self):
|
244 |
"""
|
245 |
Genera todas las gr谩ficas de RSM, variando la variable fija y sus niveles usando el modelo simplificado.
|
246 |
+
Almacena las figuras en self.all_figures.
|
247 |
"""
|
248 |
if self.model_simplified is None:
|
249 |
print("Error: Ajusta el modelo simplificado primero.")
|
250 |
+
return
|
251 |
+
|
252 |
+
self.all_figures = [] # Resetear la lista de figuras
|
253 |
|
254 |
# Niveles naturales para graficar
|
255 |
levels_to_plot_natural = {
|
|
|
258 |
self.x3_name: self.x3_levels
|
259 |
}
|
260 |
|
261 |
+
# Generar y almacenar gr谩ficos individuales
|
|
|
262 |
for fixed_variable in [self.x1_name, self.x2_name, self.x3_name]:
|
263 |
for level in levels_to_plot_natural[fixed_variable]:
|
264 |
fig = self.plot_rsm_individual(fixed_variable, level)
|
265 |
if fig is not None:
|
266 |
+
self.all_figures.append(fig)
|
|
|
267 |
|
268 |
def coded_to_natural(self, coded_value, variable_name):
|
269 |
"""Convierte un valor codificado a su valor natural."""
|
|
|
298 |
|
299 |
# Crear el diagrama de Pareto
|
300 |
fig = px.bar(
|
301 |
+
x=sorted_tvalues.round(3),
|
302 |
y=sorted_names,
|
303 |
orientation='h',
|
304 |
labels={'x': 'Efecto Estandarizado', 'y': 'T茅rmino'},
|
|
|
326 |
|
327 |
for term, coef in coefficients.items():
|
328 |
if term != 'Intercept':
|
329 |
+
if term == f'{self.x1_name}':
|
330 |
+
equation += f" + {coef:.3f}*{self.x1_name}"
|
331 |
+
elif term == f'{self.x2_name}':
|
332 |
+
equation += f" + {coef:.3f}*{self.x2_name}"
|
333 |
+
elif term == f'{self.x3_name}':
|
334 |
+
equation += f" + {coef:.3f}*{self.x3_name}"
|
335 |
+
elif term == f'I({self.x1_name} ** 2)':
|
336 |
+
equation += f" + {coef:.3f}*{self.x1_name}^2"
|
337 |
+
elif term == f'I({self.x2_name} ** 2)':
|
338 |
+
equation += f" + {coef:.3f}*{self.x2_name}^2"
|
339 |
+
elif term == f'I({self.x3_name} ** 2)':
|
340 |
+
equation += f" + {coef:.3f}*{self.x3_name}^2"
|
341 |
|
342 |
return equation
|
343 |
|
344 |
def generate_prediction_table(self):
|
345 |
+
"""
|
346 |
+
Genera una tabla con los valores actuales, predichos y residuales.
|
347 |
+
"""
|
348 |
+
if self.model_simplified is None:
|
349 |
+
print("Error: Ajusta el modelo simplificado primero.")
|
350 |
+
return None
|
351 |
|
352 |
+
self.data['Predicho'] = self.model_simplified.predict(self.data)
|
353 |
+
self.data['Residual'] = self.data[self.y_name] - self.data['Predicho']
|
354 |
|
355 |
+
return self.data[[self.y_name, 'Predicho', 'Residual']].round(3)
|
356 |
|
357 |
def calculate_contribution_percentage(self):
|
358 |
+
"""
|
359 |
+
Calcula el porcentaje de contribuci贸n de cada factor a la variabilidad de la respuesta (AIA).
|
360 |
+
"""
|
361 |
+
if self.model_simplified is None:
|
362 |
+
print("Error: Ajusta el modelo simplificado primero.")
|
363 |
+
return None
|
364 |
+
|
365 |
+
# ANOVA del modelo simplificado
|
366 |
+
anova_table = sm.stats.anova_lm(self.model_simplified, typ=2)
|
367 |
+
|
368 |
+
# Suma de cuadrados total
|
369 |
+
ss_total = anova_table['sum_sq'].sum()
|
370 |
+
|
371 |
+
# Crear tabla de contribuci贸n
|
372 |
+
contribution_table = pd.DataFrame({
|
373 |
+
'Factor': [],
|
374 |
+
'Suma de Cuadrados': [],
|
375 |
+
'% Contribuci贸n': []
|
376 |
+
})
|
377 |
+
|
378 |
+
# Calcular porcentaje de contribuci贸n para cada factor
|
379 |
+
for index, row in anova_table.iterrows():
|
380 |
+
if index != 'Residual':
|
381 |
+
factor_name = index
|
382 |
+
if factor_name == f'I({self.x1_name} ** 2)':
|
383 |
+
factor_name = f'{self.x1_name}^2'
|
384 |
+
elif factor_name == f'I({self.x2_name} ** 2)':
|
385 |
+
factor_name = f'{self.x2_name}^2'
|
386 |
+
elif factor_name == f'I({self.x3_name} ** 2)':
|
387 |
+
factor_name = f'{self.x3_name}^2'
|
388 |
+
|
389 |
+
ss_factor = row['sum_sq']
|
390 |
+
contribution_percentage = (ss_factor / ss_total) * 100
|
391 |
+
|
392 |
+
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
393 |
+
'Factor': [factor_name],
|
394 |
+
'Suma de Cuadrados': [ss_factor],
|
395 |
+
'% Contribuci贸n': [contribution_percentage]
|
396 |
+
})], ignore_index=True)
|
397 |
+
|
398 |
+
return contribution_table.round(3)
|
399 |
|
400 |
def calculate_detailed_anova(self):
|
401 |
"""
|
|
|
421 |
df_total = len(self.data) - 1
|
422 |
|
423 |
# 5. Suma de cuadrados de la regresi贸n
|
424 |
+
ss_regression = anova_reduced['sum_sq'][:-1].sum() # Sumar todo excepto 'Residual'
|
425 |
|
426 |
# 6. Grados de libertad de la regresi贸n
|
427 |
df_regression = len(anova_reduced) - 1
|
|
|
432 |
|
433 |
# 8. Suma de cuadrados del error puro (se calcula a partir de las r茅plicas)
|
434 |
replicas = self.data[self.data.duplicated(subset=[self.x1_name, self.x2_name, self.x3_name], keep=False)]
|
435 |
+
if not replicas.empty:
|
436 |
+
ss_pure_error = replicas.groupby([self.x1_name, self.x2_name, self.x3_name])[self.y_name].var().sum() * replicas.groupby([self.x1_name, self.x2_name, self.x3_name]).ngroups
|
437 |
+
df_pure_error = len(replicas) - replicas.groupby([self.x1_name, self.x2_name, self.x3_name]).ngroups
|
438 |
+
else:
|
439 |
+
ss_pure_error = np.nan
|
440 |
+
df_pure_error = np.nan
|
441 |
|
442 |
# 9. Suma de cuadrados de la falta de ajuste
|
443 |
+
ss_lack_of_fit = ss_residual - ss_pure_error if not np.isnan(ss_pure_error) else np.nan
|
444 |
+
df_lack_of_fit = df_residual - df_pure_error if not np.isnan(df_pure_error) else np.nan
|
445 |
|
446 |
# 10. Cuadrados medios
|
447 |
ms_regression = ss_regression / df_regression
|
448 |
ms_residual = ss_residual / df_residual
|
449 |
+
ms_lack_of_fit = ss_lack_of_fit / df_lack_of_fit if not np.isnan(ss_lack_of_fit) else np.nan
|
450 |
+
ms_pure_error = ss_pure_error / df_pure_error if not np.isnan(ss_pure_error) else np.nan
|
451 |
|
452 |
# 11. Estad铆stico F y valor p para la falta de ajuste
|
453 |
+
f_lack_of_fit = ms_lack_of_fit / ms_pure_error if not np.isnan(ms_lack_of_fit) else np.nan
|
454 |
+
p_lack_of_fit = 1 - f.cdf(f_lack_of_fit, df_lack_of_fit, df_pure_error) if not np.isnan(f_lack_of_fit) else np.nan
|
455 |
|
456 |
# 12. Crear la tabla ANOVA detallada
|
457 |
detailed_anova_table = pd.DataFrame({
|
458 |
'Fuente de Variaci贸n': ['Regresi贸n', 'Residual', 'Falta de Ajuste', 'Error Puro', 'Total'],
|
459 |
+
'Suma de Cuadrados': [ss_regression, ss_residual, ss_lack_of_fit, ss_pure_error, ss_total],
|
460 |
'Grados de Libertad': [df_regression, df_residual, df_lack_of_fit, df_pure_error, df_total],
|
461 |
+
'Cuadrado Medio': [ms_regression, ms_residual, ms_lack_of_fit, ms_pure_error, np.nan],
|
462 |
+
'F': [np.nan, np.nan, f_lack_of_fit, np.nan, np.nan],
|
463 |
+
'Valor p': [np.nan, np.nan, p_lack_of_fit, np.nan, np.nan]
|
464 |
})
|
465 |
|
466 |
# Calcular la suma de cuadrados y grados de libertad para la curvatura
|
|
|
468 |
df_curvature = 3
|
469 |
|
470 |
# A帽adir la fila de curvatura a la tabla ANOVA
|
471 |
+
detailed_anova_table.loc[len(detailed_anova_table)] = ['Curvatura', ss_curvature, df_curvature, ss_curvature / df_curvature, np.nan, np.nan]
|
472 |
|
473 |
# Reorganizar las filas para que la curvatura aparezca despu茅s de la regresi贸n
|
474 |
detailed_anova_table = detailed_anova_table.reindex([0, 5, 1, 2, 3, 4])
|
|
|
476 |
# Resetear el 铆ndice para que sea consecutivo
|
477 |
detailed_anova_table = detailed_anova_table.reset_index(drop=True)
|
478 |
|
479 |
+
return detailed_anova_table.round(3)
|
480 |
+
|
481 |
+
def get_all_tables(self):
|
482 |
+
"""
|
483 |
+
Obtiene todas las tablas generadas para ser exportadas a Excel.
|
484 |
+
"""
|
485 |
+
prediction_table = self.generate_prediction_table()
|
486 |
+
contribution_table = self.calculate_contribution_percentage()
|
487 |
+
detailed_anova_table = self.calculate_detailed_anova()
|
488 |
+
|
489 |
+
return {
|
490 |
+
'Predicciones': prediction_table,
|
491 |
+
'% Contribuci贸n': contribution_table,
|
492 |
+
'ANOVA Detallada': detailed_anova_table
|
493 |
+
}
|
494 |
+
|
495 |
+
def save_figures_to_zip(self):
|
496 |
+
"""
|
497 |
+
Guarda todas las figuras almacenadas en self.all_figures a un archivo ZIP en memoria.
|
498 |
+
|
499 |
+
Returns:
|
500 |
+
bytes: Bytes del archivo ZIP.
|
501 |
+
"""
|
502 |
+
if not self.all_figures:
|
503 |
+
return None
|
504 |
+
|
505 |
+
zip_buffer = io.BytesIO()
|
506 |
+
with zipfile.ZipFile(zip_buffer, 'w') as zip_file:
|
507 |
+
for idx, fig in enumerate(self.all_figures, start=1):
|
508 |
+
img_bytes = fig.to_image(format="png")
|
509 |
+
zip_file.writestr(f'Grafico_{idx}.png', img_bytes)
|
510 |
+
zip_buffer.seek(0)
|
511 |
+
return zip_buffer
|
512 |
+
|
513 |
+
def save_fig_to_bytes(self, fig):
|
514 |
+
"""
|
515 |
+
Convierte una figura Plotly a bytes en formato PNG.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
fig (go.Figure): Figura de Plotly.
|
519 |
+
|
520 |
+
Returns:
|
521 |
+
bytes: Bytes de la imagen PNG.
|
522 |
+
"""
|
523 |
+
return fig.to_image(format="png")
|
524 |
|
525 |
# --- Funciones para la interfaz de Gradio ---
|
526 |
|
|
|
539 |
data_str (str): Datos del experimento en formato CSV, separados por comas.
|
540 |
|
541 |
Returns:
|
542 |
+
tuple: (pd.DataFrame, str, str, str, str, list, list, list, gr.update)
|
543 |
"""
|
544 |
try:
|
545 |
# Convertir los niveles a listas de n煤meros
|
|
|
561 |
global rsm
|
562 |
rsm = RSM_BoxBehnken(data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels)
|
563 |
|
564 |
+
return data.round(3), x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels, gr.update(visible=True)
|
565 |
+
|
566 |
except Exception as e:
|
567 |
return None, "", "", "", "", [], [], [], gr.update(visible=False), f"Error: {e}"
|
568 |
|
569 |
+
def fit_and_optimize_model():
|
570 |
if 'rsm' not in globals():
|
571 |
+
return None, None, None, None, None, None, "Error: Carga los datos primero.", None, None
|
572 |
|
573 |
+
# Ajustar modelos y optimizar
|
574 |
model_completo, pareto_completo = rsm.fit_model()
|
575 |
model_simplificado, pareto_simplificado = rsm.fit_simplified_model()
|
576 |
optimization_table = rsm.optimize()
|
|
|
578 |
prediction_table = rsm.generate_prediction_table()
|
579 |
contribution_table = rsm.calculate_contribution_percentage()
|
580 |
anova_table = rsm.calculate_detailed_anova()
|
581 |
+
|
582 |
+
# Generar todas las figuras y almacenarlas
|
583 |
+
rsm.generate_all_plots()
|
584 |
+
|
585 |
# Formatear la ecuaci贸n para que se vea mejor en Markdown
|
586 |
equation_formatted = equation.replace(" + ", "<br>+ ").replace(" ** ", "^").replace("*", " 脳 ")
|
587 |
equation_formatted = f"### Ecuaci贸n del Modelo Simplificado:<br>{equation_formatted}"
|
588 |
|
589 |
return (
|
590 |
+
model_completo.summary().as_html(),
|
591 |
pareto_completo,
|
|
|
592 |
model_simplificado.summary().as_html(),
|
593 |
pareto_simplificado,
|
594 |
equation_formatted,
|
|
|
596 |
prediction_table,
|
597 |
contribution_table,
|
598 |
anova_table,
|
599 |
+
rsm.all_figures, # Devuelve todas las figuras generadas
|
600 |
+
gr.update() # Placeholder para actualizar otros componentes si es necesario
|
601 |
)
|
602 |
|
603 |
+
def generate_rsm_plot(fixed_variable, fixed_level, all_figures, current_index):
|
604 |
+
if 'rsm' not in globals():
|
605 |
+
return None, "Error: Carga los datos primero.", current_index
|
606 |
|
607 |
+
# Encontrar el 铆ndice correspondiente al gr谩fico seleccionado
|
608 |
+
# Asumimos que los gr谩ficos est谩n ordenados por variable fija y nivel
|
609 |
+
# Se puede mejorar la l贸gica si es necesario
|
610 |
+
selected_fig = None
|
611 |
+
for idx, fig in enumerate(all_figures):
|
612 |
+
title = fig.layout.title.text
|
613 |
+
if fixed_variable in title and f"fijo en {fixed_level:.3f}" in title:
|
614 |
+
selected_fig = fig
|
615 |
+
current_index = idx
|
616 |
+
break
|
617 |
+
|
618 |
+
if selected_fig is None and all_figures:
|
619 |
+
selected_fig = all_figures[0]
|
620 |
+
current_index = 0
|
621 |
|
622 |
+
return selected_fig, None, current_index
|
623 |
+
|
624 |
+
def navigate_plot(direction, current_index, total_plots):
|
625 |
+
"""
|
626 |
+
Navega entre los gr谩ficos.
|
627 |
+
|
628 |
+
Args:
|
629 |
+
direction (str): 'left' o 'right'.
|
630 |
+
current_index (int): 脥ndice actual.
|
631 |
+
total_plots (int): Total de gr谩ficos.
|
632 |
+
|
633 |
+
Returns:
|
634 |
+
int: Nuevo 铆ndice.
|
635 |
+
"""
|
636 |
+
if direction == 'left':
|
637 |
+
new_index = (current_index - 1) % total_plots
|
638 |
+
elif direction == 'right':
|
639 |
+
new_index = (current_index + 1) % total_plots
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
640 |
else:
|
641 |
+
new_index = current_index
|
642 |
+
return new_index
|
643 |
+
|
644 |
+
def download_current_plot(all_figures, current_index):
|
645 |
+
"""
|
646 |
+
Descarga la figura actual como PNG.
|
647 |
+
|
648 |
+
Args:
|
649 |
+
all_figures (list): Lista de figuras.
|
650 |
+
current_index (int): 脥ndice de la figura actual.
|
651 |
+
|
652 |
+
Returns:
|
653 |
+
bytes: Bytes de la imagen PNG.
|
654 |
+
"""
|
655 |
+
if not all_figures:
|
656 |
+
return None
|
657 |
+
fig = all_figures[current_index]
|
658 |
+
img_bytes = rsm.save_fig_to_bytes(fig)
|
659 |
+
return img_bytes
|
660 |
+
|
661 |
+
def download_all_plots_zip(all_figures):
|
662 |
+
"""
|
663 |
+
Descarga todas las figuras en un archivo ZIP.
|
664 |
+
|
665 |
+
Args:
|
666 |
+
all_figures (list): Lista de figuras.
|
667 |
+
|
668 |
+
Returns:
|
669 |
+
bytes: Bytes del archivo ZIP.
|
670 |
+
"""
|
671 |
+
zip_bytes = rsm.save_figures_to_zip()
|
672 |
+
if zip_bytes:
|
673 |
+
return zip_bytes
|
674 |
+
return None
|
675 |
|
676 |
+
def download_all_tables_excel():
|
677 |
+
"""
|
678 |
+
Descarga todas las tablas en un archivo Excel con m煤ltiples hojas.
|
679 |
|
680 |
+
Returns:
|
681 |
+
bytes: Bytes del archivo Excel.
|
682 |
+
"""
|
683 |
+
if 'rsm' not in globals():
|
684 |
+
return None
|
685 |
|
686 |
+
tables = rsm.get_all_tables()
|
687 |
+
excel_buffer = io.BytesIO()
|
688 |
+
with pd.ExcelWriter(excel_buffer, engine='xlsxwriter') as writer:
|
689 |
+
for sheet_name, table in tables.items():
|
690 |
+
table.to_excel(writer, sheet_name=sheet_name, index=False)
|
691 |
+
excel_buffer.seek(0)
|
692 |
+
return excel_buffer
|
693 |
|
694 |
# --- Crear la interfaz de Gradio ---
|
695 |
|
696 |
with gr.Blocks() as demo:
|
697 |
gr.Markdown("# Optimizaci贸n de la producci贸n de AIA usando RSM Box-Behnken")
|
698 |
+
|
699 |
with gr.Row():
|
700 |
with gr.Column():
|
701 |
gr.Markdown("## Configuraci贸n del Dise帽o")
|
|
|
706 |
x1_levels_input = gr.Textbox(label="Niveles de X1 (separados por comas)", value="1, 3.5, 5.5")
|
707 |
x2_levels_input = gr.Textbox(label="Niveles de X2 (separados por comas)", value="0.03, 0.2, 0.3")
|
708 |
x3_levels_input = gr.Textbox(label="Niveles de X3 (separados por comas)", value="0.4, 0.65, 0.9")
|
709 |
+
data_input = gr.Textbox(label="Datos del Experimento (formato CSV)", lines=10, value="""1,-1,-1,0,166.594
|
710 |
2,1,-1,0,177.557
|
711 |
3,-1,1,0,127.261
|
712 |
4,1,1,0,147.573
|
|
|
722 |
14,0,0,0,297.238
|
723 |
15,0,0,0,280.896""")
|
724 |
load_button = gr.Button("Cargar Datos")
|
725 |
+
|
|
|
726 |
with gr.Column():
|
727 |
gr.Markdown("## Datos Cargados")
|
728 |
+
data_output = gr.Dataframe(label="Tabla de Datos", interactive=False)
|
729 |
+
|
730 |
+
# Hacer que la secci贸n de an谩lisis sea visible solo despu茅s de cargar los datos
|
|
|
|
|
|
|
731 |
with gr.Row(visible=False) as analysis_row:
|
732 |
with gr.Column():
|
733 |
fit_button = gr.Button("Ajustar Modelo y Optimizar")
|
734 |
gr.Markdown("**Modelo Completo**")
|
735 |
+
model_completo_output = gr.HTML()
|
736 |
+
pareto_completo_output = gr.Plot()
|
|
|
|
|
737 |
gr.Markdown("**Modelo Simplificado**")
|
738 |
+
model_simplificado_output = gr.HTML()
|
739 |
+
pareto_simplificado_output = gr.Plot()
|
740 |
+
gr.Markdown("**Ecuaci贸n del Modelo Simplificado**")
|
741 |
+
equation_output = gr.HTML()
|
742 |
+
optimization_table_output = gr.Dataframe(label="Tabla de Optimizaci贸n", interactive=False)
|
743 |
+
prediction_table_output = gr.Dataframe(label="Tabla de Predicciones", interactive=False)
|
744 |
+
contribution_table_output = gr.Dataframe(label="Tabla de % de Contribuci贸n", interactive=False)
|
745 |
+
anova_table_output = gr.Dataframe(label="Tabla ANOVA Detallada", interactive=False)
|
746 |
+
gr.Markdown("## Descargar Todas las Tablas")
|
747 |
+
download_excel_button = gr.DownloadButton("Descargar Tablas en Excel", file_name=f"Tablas_RSM_{datetime.now().strftime('%Y%m%d_%H%M%S')}.xlsx")
|
748 |
+
|
|
|
|
|
749 |
with gr.Column():
|
750 |
+
gr.Markdown("## Generar Gr谩ficos de Superficie de Respuesta")
|
751 |
+
fixed_variable_input = gr.Dropdown(label="Variable Fija", choices=["Glucosa", "Extracto_de_Levadura", "Triptofano"], value="Glucosa")
|
752 |
+
fixed_level_input = gr.Slider(label="Nivel de Variable Fija", minimum=0, maximum=1, step=0.01, value=0.5)
|
753 |
+
plot_button = gr.Button("Generar Gr谩ficos")
|
754 |
with gr.Row():
|
755 |
+
left_button = gr.Button("<")
|
756 |
+
right_button = gr.Button(">")
|
757 |
+
rsm_plot_output = gr.Plot()
|
758 |
+
plot_info = gr.Textbox(label="Informaci贸n del Gr谩fico", value="Gr谩fico 1 de 9", interactive=False)
|
759 |
+
with gr.Row():
|
760 |
+
download_plot_button = gr.DownloadButton("Descargar Gr谩fico Actual (PNG)", file_name="Grafico_RSM.png")
|
761 |
+
download_all_plots_button = gr.DownloadButton("Descargar Todos los Gr谩ficos (ZIP)", file_name="Graficos_RSM.zip")
|
762 |
+
|
763 |
load_button.click(
|
764 |
load_data,
|
765 |
inputs=[x1_name_input, x2_name_input, x3_name_input, y_name_input, x1_levels_input, x2_levels_input, x3_levels_input, data_input],
|
766 |
outputs=[data_output, x1_name_input, x2_name_input, x3_name_input, y_name_input, x1_levels_input, x2_levels_input, x3_levels_input, analysis_row]
|
767 |
)
|
768 |
+
|
769 |
fit_button.click(
|
770 |
+
fit_and_optimize_model,
|
771 |
+
inputs=[],
|
772 |
outputs=[
|
773 |
+
model_completo_output,
|
774 |
+
pareto_completo_output,
|
775 |
+
model_simplificado_output,
|
776 |
+
pareto_simplificado_output,
|
777 |
+
equation_output,
|
778 |
+
optimization_table_output,
|
779 |
+
prediction_table_output,
|
780 |
+
contribution_table_output,
|
781 |
+
anova_table_output,
|
782 |
+
gr.State(), # all_figures
|
783 |
+
gr.update()
|
|
|
784 |
]
|
785 |
)
|
786 |
+
|
787 |
+
plot_button.click(
|
788 |
+
lambda: (None, 0), # Reset plot index
|
789 |
+
inputs=[],
|
790 |
+
outputs=[rsm_plot_output, gr.State()]
|
|
|
|
|
|
|
|
|
791 |
)
|
792 |
+
|
793 |
+
# Navegaci贸n de gr谩ficos
|
794 |
+
with gr.Row():
|
795 |
+
left_button.click(
|
796 |
+
navigate_plot,
|
797 |
+
inputs=["left", gr.State(), gr.State()],
|
798 |
+
outputs=gr.State()
|
799 |
+
)
|
800 |
+
right_button.click(
|
801 |
+
navigate_plot,
|
802 |
+
inputs=["right", gr.State(), gr.State()],
|
803 |
+
outputs=gr.State()
|
804 |
+
)
|
805 |
+
|
806 |
+
# Funciones para manejar la navegaci贸n y actualizaci贸n de gr谩ficos
|
807 |
+
def update_plot(direction, current_index, total_plots, all_figures):
|
808 |
+
if not all_figures:
|
809 |
+
return None, "No hay gr谩ficos disponibles.", current_index
|
810 |
+
|
811 |
+
if direction == "left":
|
812 |
+
new_index = (current_index - 1) % total_plots
|
813 |
+
elif direction == "right":
|
814 |
+
new_index = (current_index + 1) % total_plots
|
815 |
+
else:
|
816 |
+
new_index = current_index
|
817 |
+
|
818 |
+
selected_fig = all_figures[new_index]
|
819 |
+
plot_info_text = f"Gr谩fico {new_index + 1} de {total_plots}"
|
820 |
+
|
821 |
+
return selected_fig, plot_info_text, new_index
|
822 |
|
823 |
+
# Actualizar gr谩ficos al navegar
|
824 |
+
left_button.click(
|
825 |
+
update_plot,
|
826 |
+
inputs=["left", "current_index", "total_plots", "all_figures"],
|
827 |
+
outputs=[rsm_plot_output, plot_info, gr.State()]
|
|
|
|
|
|
|
828 |
)
|
829 |
+
|
830 |
+
right_button.click(
|
831 |
+
update_plot,
|
832 |
+
inputs=["right", "current_index", "total_plots", "all_figures"],
|
833 |
+
outputs=[rsm_plot_output, plot_info, gr.State()]
|
834 |
+
)
|
835 |
+
|
836 |
+
# Descargar gr谩fico actual
|
837 |
+
download_plot_button.click(
|
838 |
+
download_current_plot,
|
839 |
+
inputs=["all_figures", "current_index"],
|
840 |
+
outputs=download_plot_button
|
841 |
+
)
|
842 |
+
|
843 |
+
# Descargar todos los gr谩ficos en ZIP
|
844 |
+
download_all_plots_button.click(
|
845 |
+
download_all_plots_zip,
|
846 |
+
inputs=["all_figures"],
|
847 |
+
outputs=download_all_plots_button
|
848 |
+
)
|
849 |
+
|
850 |
+
# Descargar todas las tablas en Excel
|
851 |
+
download_excel_button.click(
|
852 |
+
download_all_tables_excel,
|
853 |
+
inputs=[],
|
854 |
+
outputs=download_excel_button
|
855 |
)
|
856 |
|
|
|
|
|
|
|
|
|
857 |
# Ejemplo de uso
|
858 |
gr.Markdown("## Ejemplo de uso")
|
859 |
+
gr.Markdown("""
|
860 |
+
1. Introduce los nombres de las variables y sus niveles en las cajas de texto correspondientes.
|
861 |
+
2. Copia y pega los datos del experimento en la caja de texto 'Datos del Experimento'.
|
862 |
+
3. Haz clic en 'Cargar Datos' para cargar los datos en la tabla.
|
863 |
+
4. Haz clic en 'Ajustar Modelo y Optimizar' para ajustar el modelo y encontrar los niveles 贸ptimos de los factores.
|
864 |
+
5. Selecciona una variable fija y su nivel en los controles deslizantes.
|
865 |
+
6. Haz clic en 'Generar Gr谩ficos' para generar los gr谩ficos de superficie de respuesta.
|
866 |
+
7. Navega entre los gr谩ficos usando los botones '<' y '>'.
|
867 |
+
8. Descarga el gr谩fico actual en PNG o descarga todos los gr谩ficos en un ZIP.
|
868 |
+
9. Descarga todas las tablas en un archivo Excel con el bot贸n correspondiente.
|
869 |
+
""")
|
870 |
+
|
871 |
demo.launch()
|