Update app.py
Browse files
app.py
CHANGED
@@ -9,11 +9,10 @@ import plotly.express as px
|
|
9 |
from scipy.stats import t, f
|
10 |
import gradio as gr
|
11 |
import io
|
12 |
-
import os
|
13 |
import zipfile
|
|
|
14 |
|
15 |
class RSM_BoxBehnken:
|
16 |
-
# ... (La clase RSM_BoxBehnken se mantiene igual que en la respuesta anterior)
|
17 |
def __init__(self, data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels):
|
18 |
self.data = data.copy()
|
19 |
self.model = None
|
@@ -30,8 +29,25 @@ class RSM_BoxBehnken:
|
|
30 |
self.x1_levels = x1_levels
|
31 |
self.x2_levels = x2_levels
|
32 |
self.x3_levels = x3_levels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
def get_levels(self, variable_name):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
if variable_name == self.x1_name:
|
36 |
return self.x1_levels
|
37 |
elif variable_name == self.x2_name:
|
@@ -42,6 +58,9 @@ class RSM_BoxBehnken:
|
|
42 |
raise ValueError(f"Variable desconocida: {variable_name}")
|
43 |
|
44 |
def fit_model(self):
|
|
|
|
|
|
|
45 |
formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
|
46 |
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2) + ' \
|
47 |
f'{self.x1_name}:{self.x2_name} + {self.x1_name}:{self.x3_name} + {self.x2_name}:{self.x3_name}'
|
@@ -51,6 +70,9 @@ class RSM_BoxBehnken:
|
|
51 |
return self.model, self.pareto_chart(self.model, "Pareto - Modelo Completo")
|
52 |
|
53 |
def fit_simplified_model(self):
|
|
|
|
|
|
|
54 |
formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + ' \
|
55 |
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)'
|
56 |
self.model_simplified = smf.ols(formula, data=self.data).fit()
|
@@ -59,6 +81,12 @@ class RSM_BoxBehnken:
|
|
59 |
return self.model_simplified, self.pareto_chart(self.model_simplified, "Pareto - Modelo Simplificado")
|
60 |
|
61 |
def optimize(self, method='Nelder-Mead'):
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
if self.model_simplified is None:
|
63 |
print("Error: Ajusta el modelo simplificado primero.")
|
64 |
return
|
@@ -72,11 +100,13 @@ class RSM_BoxBehnken:
|
|
72 |
self.optimized_results = minimize(objective_function, x0, method=method, bounds=bounds)
|
73 |
self.optimal_levels = self.optimized_results.x
|
74 |
|
|
|
75 |
optimal_levels_natural = [
|
76 |
-
round(self.coded_to_natural(self.optimal_levels[0], self.x1_name),
|
77 |
-
round(self.coded_to_natural(self.optimal_levels[1], self.x2_name),
|
78 |
-
round(self.coded_to_natural(self.optimal_levels[2], self.x3_name),
|
79 |
]
|
|
|
80 |
optimization_table = pd.DataFrame({
|
81 |
'Variable': [self.x1_name, self.x2_name, self.x3_name],
|
82 |
'Nivel Óptimo (Natural)': optimal_levels_natural,
|
@@ -86,46 +116,69 @@ class RSM_BoxBehnken:
|
|
86 |
return optimization_table
|
87 |
|
88 |
def plot_rsm_individual(self, fixed_variable, fixed_level):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
if self.model_simplified is None:
|
90 |
print("Error: Ajusta el modelo simplificado primero.")
|
91 |
return None
|
92 |
|
|
|
93 |
varying_variables = [var for var in [self.x1_name, self.x2_name, self.x3_name] if var != fixed_variable]
|
94 |
|
|
|
95 |
x_natural_levels = self.get_levels(varying_variables[0])
|
96 |
y_natural_levels = self.get_levels(varying_variables[1])
|
97 |
|
|
|
98 |
x_range_natural = np.linspace(x_natural_levels[0], x_natural_levels[-1], 100)
|
99 |
y_range_natural = np.linspace(y_natural_levels[0], y_natural_levels[-1], 100)
|
100 |
x_grid_natural, y_grid_natural = np.meshgrid(x_range_natural, y_range_natural)
|
101 |
|
|
|
102 |
x_grid_coded = self.natural_to_coded(x_grid_natural, varying_variables[0])
|
103 |
y_grid_coded = self.natural_to_coded(y_grid_natural, varying_variables[1])
|
104 |
|
|
|
105 |
prediction_data = pd.DataFrame({
|
106 |
varying_variables[0]: x_grid_coded.flatten(),
|
107 |
varying_variables[1]: y_grid_coded.flatten(),
|
108 |
})
|
109 |
prediction_data[fixed_variable] = self.natural_to_coded(fixed_level, fixed_variable)
|
110 |
|
|
|
111 |
z_pred = self.model_simplified.predict(prediction_data).values.reshape(x_grid_coded.shape)
|
112 |
|
|
|
113 |
varying_variables = [var for var in [self.x1_name, self.x2_name, self.x3_name] if var != fixed_variable]
|
114 |
|
|
|
115 |
fixed_level_coded = self.natural_to_coded(fixed_level, fixed_variable)
|
116 |
subset_data = self.data[np.isclose(self.data[fixed_variable], fixed_level_coded)]
|
117 |
|
|
|
118 |
valid_levels = [-1, 0, 1]
|
119 |
experiments_data = subset_data[
|
120 |
subset_data[varying_variables[0]].isin(valid_levels) &
|
121 |
subset_data[varying_variables[1]].isin(valid_levels)
|
122 |
]
|
123 |
|
|
|
124 |
experiments_x_natural = experiments_data[varying_variables[0]].apply(lambda x: self.coded_to_natural(x, varying_variables[0]))
|
125 |
experiments_y_natural = experiments_data[varying_variables[1]].apply(lambda x: self.coded_to_natural(x, varying_variables[1]))
|
126 |
|
|
|
127 |
fig = go.Figure(data=[go.Surface(z=z_pred, x=x_grid_natural, y=y_grid_natural, colorscale='Viridis', opacity=0.7, showscale=True)])
|
128 |
|
|
|
|
|
129 |
for i in range(x_grid_natural.shape[0]):
|
130 |
fig.add_trace(go.Scatter3d(
|
131 |
x=x_grid_natural[i, :],
|
@@ -136,6 +189,7 @@ class RSM_BoxBehnken:
|
|
136 |
showlegend=False,
|
137 |
hoverinfo='skip'
|
138 |
))
|
|
|
139 |
for j in range(x_grid_natural.shape[1]):
|
140 |
fig.add_trace(go.Scatter3d(
|
141 |
x=x_grid_natural[:, j],
|
@@ -147,29 +201,38 @@ class RSM_BoxBehnken:
|
|
147 |
hoverinfo='skip'
|
148 |
))
|
149 |
|
|
|
|
|
|
|
|
|
150 |
colors = ['red', 'blue', 'green', 'purple', 'orange', 'yellow', 'cyan', 'magenta']
|
151 |
point_labels = []
|
152 |
for i, row in experiments_data.iterrows():
|
153 |
-
point_labels.append(f"{row[self.y_name]:.
|
154 |
|
155 |
fig.add_trace(go.Scatter3d(
|
156 |
x=experiments_x_natural,
|
157 |
y=experiments_y_natural,
|
158 |
z=experiments_data[self.y_name],
|
159 |
mode='markers+text',
|
160 |
-
marker=dict(size=4, color=colors[:len(experiments_x_natural)]),
|
161 |
-
text=point_labels,
|
162 |
textposition='top center',
|
163 |
name='Experimentos'
|
164 |
))
|
165 |
|
|
|
166 |
fig.update_layout(
|
167 |
scene=dict(
|
168 |
xaxis_title=varying_variables[0] + " (g/L)",
|
169 |
yaxis_title=varying_variables[1] + " (g/L)",
|
170 |
zaxis_title=self.y_name,
|
|
|
|
|
|
|
|
|
171 |
),
|
172 |
-
title=f"{self.y_name} vs {varying_variables[0]} y {varying_variables[1]}<br><sup>{fixed_variable} fijo en {fixed_level:.
|
173 |
height=800,
|
174 |
width=1000,
|
175 |
showlegend=True
|
@@ -177,44 +240,61 @@ class RSM_BoxBehnken:
|
|
177 |
return fig
|
178 |
|
179 |
def generate_all_plots(self):
|
|
|
|
|
|
|
180 |
if self.model_simplified is None:
|
181 |
print("Error: Ajusta el modelo simplificado primero.")
|
182 |
-
return
|
183 |
|
|
|
184 |
levels_to_plot_natural = {
|
185 |
self.x1_name: self.x1_levels,
|
186 |
self.x2_name: self.x2_levels,
|
187 |
self.x3_name: self.x3_levels
|
188 |
}
|
189 |
-
|
190 |
-
figs = []
|
191 |
|
|
|
|
|
192 |
for fixed_variable in [self.x1_name, self.x2_name, self.x3_name]:
|
193 |
for level in levels_to_plot_natural[fixed_variable]:
|
194 |
fig = self.plot_rsm_individual(fixed_variable, level)
|
195 |
if fig is not None:
|
196 |
-
|
197 |
-
return
|
198 |
|
199 |
def coded_to_natural(self, coded_value, variable_name):
|
|
|
200 |
levels = self.get_levels(variable_name)
|
201 |
return levels[0] + (coded_value + 1) * (levels[-1] - levels[0]) / 2
|
202 |
|
203 |
def natural_to_coded(self, natural_value, variable_name):
|
|
|
204 |
levels = self.get_levels(variable_name)
|
205 |
return -1 + 2 * (natural_value - levels[0]) / (levels[-1] - levels[0])
|
206 |
|
207 |
def pareto_chart(self, model, title):
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
abs_tvalues = np.abs(tvalues)
|
210 |
sorted_idx = np.argsort(abs_tvalues)[::-1]
|
211 |
sorted_tvalues = abs_tvalues[sorted_idx]
|
212 |
sorted_names = tvalues.index[sorted_idx]
|
213 |
|
214 |
-
|
215 |
-
|
|
|
216 |
t_critical = t.ppf(1 - alpha / 2, dof)
|
217 |
|
|
|
218 |
fig = px.bar(
|
219 |
x=sorted_tvalues,
|
220 |
y=sorted_names,
|
@@ -224,13 +304,17 @@ class RSM_BoxBehnken:
|
|
224 |
)
|
225 |
fig.update_yaxes(autorange="reversed")
|
226 |
|
|
|
227 |
fig.add_vline(x=t_critical, line_dash="dot",
|
228 |
-
annotation_text=f"t crítico = {t_critical:.
|
229 |
annotation_position="bottom right")
|
230 |
|
231 |
return fig
|
232 |
|
233 |
def get_simplified_equation(self):
|
|
|
|
|
|
|
234 |
if self.model_simplified is None:
|
235 |
print("Error: Ajusta el modelo simplificado primero.")
|
236 |
return None
|
@@ -256,34 +340,40 @@ class RSM_BoxBehnken:
|
|
256 |
return equation
|
257 |
|
258 |
def generate_prediction_table(self):
|
|
|
|
|
|
|
259 |
if self.model_simplified is None:
|
260 |
print("Error: Ajusta el modelo simplificado primero.")
|
261 |
return None
|
262 |
|
263 |
-
self.data['Predicho'] = self.model_simplified.predict(self.data)
|
264 |
-
self.data['Residual'] = self.data[self.y_name] - self.data['Predicho']
|
265 |
-
|
266 |
-
prediction_table = self.data[[self.y_name, 'Predicho', 'Residual']].copy()
|
267 |
-
prediction_table[self.y_name] = prediction_table[self.y_name].round(3)
|
268 |
-
prediction_table['Predicho'] = prediction_table['Predicho'].round(3)
|
269 |
-
prediction_table['Residual'] = prediction_table['Residual'].round(3)
|
270 |
|
271 |
-
return
|
272 |
|
273 |
def calculate_contribution_percentage(self):
|
|
|
|
|
|
|
274 |
if self.model_simplified is None:
|
275 |
print("Error: Ajusta el modelo simplificado primero.")
|
276 |
return None
|
277 |
|
|
|
278 |
anova_table = sm.stats.anova_lm(self.model_simplified, typ=2)
|
|
|
|
|
279 |
ss_total = anova_table['sum_sq'].sum()
|
280 |
|
|
|
281 |
contribution_table = pd.DataFrame({
|
282 |
'Factor': [],
|
283 |
'Suma de Cuadrados': [],
|
284 |
'% Contribución': []
|
285 |
})
|
286 |
|
|
|
287 |
for index, row in anova_table.iterrows():
|
288 |
if index != 'Residual':
|
289 |
factor_name = index
|
@@ -295,69 +385,89 @@ class RSM_BoxBehnken:
|
|
295 |
factor_name = f'{self.x3_name}^2'
|
296 |
|
297 |
ss_factor = row['sum_sq']
|
298 |
-
contribution_percentage = (ss_factor / ss_total) * 100
|
299 |
|
300 |
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
301 |
'Factor': [factor_name],
|
302 |
-
'Suma de Cuadrados': [round(ss_factor,
|
303 |
-
'% Contribución': [
|
304 |
})], ignore_index=True)
|
305 |
|
306 |
return contribution_table
|
307 |
|
308 |
def calculate_detailed_anova(self):
|
|
|
|
|
|
|
309 |
if self.model_simplified is None:
|
310 |
print("Error: Ajusta el modelo simplificado primero.")
|
311 |
return None
|
312 |
|
|
|
|
|
313 |
formula_reduced = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
|
314 |
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)'
|
315 |
model_reduced = smf.ols(formula_reduced, data=self.data).fit()
|
316 |
|
|
|
317 |
anova_reduced = sm.stats.anova_lm(model_reduced, typ=2)
|
318 |
|
|
|
319 |
ss_total = np.sum((self.data[self.y_name] - self.data[self.y_name].mean())**2)
|
320 |
|
|
|
321 |
df_total = len(self.data) - 1
|
322 |
|
323 |
-
|
|
|
324 |
|
|
|
325 |
df_regression = len(anova_reduced) - 1
|
326 |
|
|
|
327 |
ss_residual = self.model_simplified.ssr
|
328 |
df_residual = self.model_simplified.df_resid
|
329 |
|
|
|
330 |
replicas = self.data[self.data.duplicated(subset=[self.x1_name, self.x2_name, self.x3_name], keep=False)]
|
331 |
ss_pure_error = replicas.groupby([self.x1_name, self.x2_name, self.x3_name])[self.y_name].var().sum()
|
332 |
df_pure_error = len(replicas) - len(replicas.groupby([self.x1_name, self.x2_name, self.x3_name]))
|
333 |
|
|
|
334 |
ss_lack_of_fit = ss_residual - ss_pure_error
|
335 |
df_lack_of_fit = df_residual - df_pure_error
|
336 |
|
|
|
337 |
ms_regression = ss_regression / df_regression
|
338 |
ms_residual = ss_residual / df_residual
|
339 |
ms_lack_of_fit = ss_lack_of_fit / df_lack_of_fit
|
340 |
ms_pure_error = ss_pure_error / df_pure_error
|
341 |
|
|
|
342 |
f_lack_of_fit = ms_lack_of_fit / ms_pure_error
|
343 |
-
p_lack_of_fit = 1 - f.cdf(f_lack_of_fit, df_lack_of_fit, df_pure_error)
|
344 |
|
|
|
345 |
detailed_anova_table = pd.DataFrame({
|
346 |
'Fuente de Variación': ['Regresión', 'Residual', 'Falta de Ajuste', 'Error Puro', 'Total'],
|
347 |
-
'Suma de Cuadrados': [round(ss_regression,
|
348 |
'Grados de Libertad': [df_regression, df_residual, df_lack_of_fit, df_pure_error, df_total],
|
349 |
-
'Cuadrado Medio': [round(ms_regression,
|
350 |
-
'F': [np.nan, np.nan, round(f_lack_of_fit,
|
351 |
-
'Valor p': [np.nan, np.nan, round(p_lack_of_fit,
|
352 |
})
|
353 |
|
|
|
354 |
ss_curvature = anova_reduced['sum_sq'][f'I({self.x1_name} ** 2)'] + anova_reduced['sum_sq'][f'I({self.x2_name} ** 2)'] + anova_reduced['sum_sq'][f'I({self.x3_name} ** 2)']
|
355 |
df_curvature = 3
|
356 |
|
357 |
-
|
|
|
358 |
|
|
|
359 |
detailed_anova_table = detailed_anova_table.reindex([0, 5, 1, 2, 3, 4])
|
360 |
|
|
|
361 |
detailed_anova_table = detailed_anova_table.reset_index(drop=True)
|
362 |
|
363 |
return detailed_anova_table
|
@@ -365,19 +475,39 @@ class RSM_BoxBehnken:
|
|
365 |
# --- Funciones para la interfaz de Gradio ---
|
366 |
|
367 |
def load_data(x1_name, x2_name, x3_name, y_name, x1_levels_str, x2_levels_str, x3_levels_str, data_str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
368 |
try:
|
|
|
369 |
x1_levels = [float(x.strip()) for x in x1_levels_str.split(',')]
|
370 |
x2_levels = [float(x.strip()) for x in x2_levels_str.split(',')]
|
371 |
x3_levels = [float(x.strip()) for x in x3_levels_str.split(',')]
|
372 |
|
|
|
373 |
data_list = [row.split(',') for row in data_str.strip().split('\n')]
|
374 |
column_names = ['Exp.', x1_name, x2_name, x3_name, y_name]
|
375 |
data = pd.DataFrame(data_list, columns=column_names)
|
376 |
-
data = data.apply(pd.to_numeric, errors='coerce')
|
377 |
|
|
|
378 |
if not all(col in data.columns for col in column_names):
|
379 |
raise ValueError("El formato de los datos no es correcto.")
|
380 |
|
|
|
381 |
global rsm
|
382 |
rsm = RSM_BoxBehnken(data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels)
|
383 |
|
@@ -388,7 +518,7 @@ def load_data(x1_name, x2_name, x3_name, y_name, x1_levels_str, x2_levels_str, x
|
|
388 |
|
389 |
def fit_and_optimize_model():
|
390 |
if 'rsm' not in globals():
|
391 |
-
return None, None, None, None, None, None, "Error: Carga los datos primero."
|
392 |
|
393 |
model_completo, pareto_completo = rsm.fit_model()
|
394 |
model_simplificado, pareto_simplificado = rsm.fit_simplified_model()
|
@@ -397,101 +527,73 @@ def fit_and_optimize_model():
|
|
397 |
prediction_table = rsm.generate_prediction_table()
|
398 |
contribution_table = rsm.calculate_contribution_percentage()
|
399 |
anova_table = rsm.calculate_detailed_anova()
|
400 |
-
|
|
|
|
|
|
|
|
|
401 |
equation_formatted = equation.replace(" + ", "<br>+ ").replace(" ** ", "^").replace("*", " × ")
|
402 |
equation_formatted = f"### Ecuación del Modelo Simplificado:<br>{equation_formatted}"
|
403 |
-
|
404 |
|
405 |
-
return model_completo.summary().as_html(), pareto_completo, model_simplificado.summary().as_html(), pareto_simplificado, equation_formatted, optimization_table, prediction_table, contribution_table, anova_table
|
406 |
-
|
407 |
-
current_plot_index = 0
|
408 |
-
plot_images = []
|
409 |
-
|
410 |
-
def generate_rsm_plot(fixed_variable, fixed_level):
|
411 |
-
global current_plot_index, plot_images
|
412 |
-
|
413 |
-
if 'rsm' not in globals():
|
414 |
-
return None, "Error: Carga los datos primero.", None
|
415 |
-
|
416 |
-
if not plot_images:
|
417 |
-
plot_images = rsm.generate_all_plots()
|
418 |
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
|
430 |
def download_excel():
|
431 |
if 'rsm' not in globals():
|
432 |
-
return None, "Error: Carga los datos primero."
|
433 |
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
with pd.ExcelWriter(temp_file.name, engine='xlsxwriter') as writer:
|
438 |
rsm.data.to_excel(writer, sheet_name='Datos', index=False)
|
439 |
rsm.generate_prediction_table().to_excel(writer, sheet_name='Predicciones', index=False)
|
440 |
-
rsm.optimize().to_excel(writer, sheet_name='Optimizacion', index=False)
|
441 |
rsm.calculate_contribution_percentage().to_excel(writer, sheet_name='Contribucion', index=False)
|
442 |
rsm.calculate_detailed_anova().to_excel(writer, sheet_name='ANOVA', index=False)
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
459 |
img_bytes = fig.to_image(format="png")
|
460 |
-
zipf.writestr(f"
|
461 |
-
|
462 |
-
return temp_file.name
|
463 |
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
return None, "Error: Carga los datos primero.", None
|
469 |
-
|
470 |
-
if not plot_images:
|
471 |
-
plot_images = rsm.generate_all_plots()
|
472 |
-
|
473 |
-
if not plot_images:
|
474 |
-
return None, "Error: No se pudieron generar los gráficos.", None
|
475 |
-
|
476 |
-
current_plot_index = (current_plot_index) % len(plot_images)
|
477 |
-
fig = plot_images[current_plot_index]
|
478 |
-
|
479 |
-
# Create a temporary file for the image
|
480 |
-
temp_file = zipfile.NamedTemporaryFile(delete=False, suffix='.png')
|
481 |
-
fig.write_image(temp_file.name)
|
482 |
-
|
483 |
-
return fig, "", temp_file.name
|
484 |
-
|
485 |
-
def next_plot():
|
486 |
-
global current_plot_index
|
487 |
-
current_plot_index += 1
|
488 |
-
return current_plot_index
|
489 |
-
|
490 |
-
def prev_plot():
|
491 |
-
global current_plot_index
|
492 |
-
current_plot_index -= 1
|
493 |
-
|
494 |
-
return current_plot_index
|
495 |
|
496 |
# --- Crear la interfaz de Gradio ---
|
497 |
|
@@ -530,54 +632,71 @@ with gr.Blocks() as demo:
|
|
530 |
gr.Markdown("## Datos Cargados")
|
531 |
data_output = gr.Dataframe(label="Tabla de Datos")
|
532 |
|
533 |
-
# Hacer que la sección de análisis sea visible solo después de cargar los datos
|
534 |
with gr.Row(visible=False) as analysis_row:
|
535 |
with gr.Column():
|
536 |
fit_button = gr.Button("Ajustar Modelo y Optimizar")
|
537 |
-
download_excel_button = gr.Button("Descargar Tablas en Excel")
|
538 |
gr.Markdown("**Modelo Completo**")
|
539 |
-
|
540 |
-
|
|
|
|
|
541 |
gr.Markdown("**Modelo Simplificado**")
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
|
|
546 |
prediction_table_output = gr.Dataframe(label="Tabla de Predicciones")
|
547 |
contribution_table_output = gr.Dataframe(label="Tabla de % de Contribución")
|
548 |
anova_table_output = gr.Dataframe(label="Tabla ANOVA Detallada")
|
|
|
|
|
|
|
|
|
|
|
549 |
with gr.Column():
|
550 |
-
gr.Markdown("##
|
551 |
-
fixed_variable_input = gr.Dropdown(label="Variable Fija", choices=["Glucosa", "Extracto_de_Levadura", "Triptofano"], value="Glucosa")
|
552 |
-
fixed_level_input = gr.Slider(label="Nivel de Variable Fija", minimum=0, maximum=1, step=0.01, value=0.5)
|
553 |
with gr.Row():
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
rsm_plot_output = gr.Plot()
|
560 |
-
plot_image_output = gr.File(label="Descargar Gráfico Actual")
|
561 |
|
|
|
562 |
load_button.click(
|
563 |
load_data,
|
564 |
inputs=[x1_name_input, x2_name_input, x3_name_input, y_name_input, x1_levels_input, x2_levels_input, x3_levels_input, data_input],
|
565 |
outputs=[data_output, x1_name_input, x2_name_input, x3_name_input, y_name_input, x1_levels_input, x2_levels_input, x3_levels_input, analysis_row]
|
566 |
)
|
567 |
|
568 |
-
fit_button.click(
|
|
|
|
|
|
|
569 |
|
570 |
-
|
571 |
-
|
572 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
573 |
|
574 |
download_excel_button.click(download_excel, outputs=[download_excel_button])
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
prev_plot_button.click(prev_plot, outputs=prev_plot_button).then(generate_rsm_plot, inputs=[fixed_variable_input, fixed_level_input], outputs=[rsm_plot_output, equation_output, plot_image_output])
|
579 |
-
|
580 |
-
next_plot_button.click(next_plot, outputs=next_plot_button).then(generate_rsm_plot, inputs=[fixed_variable_input, fixed_level_input], outputs=[rsm_plot_output, equation_output, plot_image_output])
|
581 |
|
582 |
# Ejemplo de uso
|
583 |
gr.Markdown("## Ejemplo de uso")
|
@@ -585,11 +704,9 @@ with gr.Blocks() as demo:
|
|
585 |
gr.Markdown("2. Copia y pega los datos del experimento en la caja de texto 'Datos del Experimento'.")
|
586 |
gr.Markdown("3. Haz clic en 'Cargar Datos' para cargar los datos en la tabla.")
|
587 |
gr.Markdown("4. Haz clic en 'Ajustar Modelo y Optimizar' para ajustar el modelo y encontrar los niveles óptimos de los factores.")
|
588 |
-
gr.Markdown("5.
|
589 |
-
gr.Markdown("6. Haz clic en '
|
590 |
-
gr.Markdown("7.
|
591 |
-
gr.Markdown("8. Haz clic en 'Descargar
|
592 |
-
gr.Markdown("9. Haz clic en 'Descargar Gráfico Actual' para descargar la imagen del gráfico actual en formato PNG.")
|
593 |
-
gr.Markdown("10. Haz clic en 'Descargar Gráficos en ZIP' para descargar todas las imágenes de los gráficos en un archivo ZIP.")
|
594 |
|
595 |
demo.launch()
|
|
|
9 |
from scipy.stats import t, f
|
10 |
import gradio as gr
|
11 |
import io
|
|
|
12 |
import zipfile
|
13 |
+
from base64 import b64encode
|
14 |
|
15 |
class RSM_BoxBehnken:
|
|
|
16 |
def __init__(self, data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels):
|
17 |
self.data = data.copy()
|
18 |
self.model = None
|
|
|
29 |
self.x1_levels = x1_levels
|
30 |
self.x2_levels = x2_levels
|
31 |
self.x3_levels = x3_levels
|
32 |
+
|
33 |
+
# Formatear datos numéricos a 3 decimales
|
34 |
+
self.format_data()
|
35 |
+
|
36 |
+
def format_data(self):
|
37 |
+
"""Formatea los datos numéricos a 3 decimales."""
|
38 |
+
numeric_cols = self.data.select_dtypes(include=np.number).columns
|
39 |
+
self.data[numeric_cols] = self.data[numeric_cols].round(3)
|
40 |
|
41 |
def get_levels(self, variable_name):
|
42 |
+
"""
|
43 |
+
Obtiene los niveles para una variable específica.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
variable_name (str): Nombre de la variable.
|
47 |
+
|
48 |
+
Returns:
|
49 |
+
list: Niveles de la variable.
|
50 |
+
"""
|
51 |
if variable_name == self.x1_name:
|
52 |
return self.x1_levels
|
53 |
elif variable_name == self.x2_name:
|
|
|
58 |
raise ValueError(f"Variable desconocida: {variable_name}")
|
59 |
|
60 |
def fit_model(self):
|
61 |
+
"""
|
62 |
+
Ajusta el modelo de segundo orden completo a los datos.
|
63 |
+
"""
|
64 |
formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
|
65 |
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2) + ' \
|
66 |
f'{self.x1_name}:{self.x2_name} + {self.x1_name}:{self.x3_name} + {self.x2_name}:{self.x3_name}'
|
|
|
70 |
return self.model, self.pareto_chart(self.model, "Pareto - Modelo Completo")
|
71 |
|
72 |
def fit_simplified_model(self):
|
73 |
+
"""
|
74 |
+
Ajusta el modelo de segundo orden a los datos, eliminando términos no significativos.
|
75 |
+
"""
|
76 |
formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + ' \
|
77 |
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)'
|
78 |
self.model_simplified = smf.ols(formula, data=self.data).fit()
|
|
|
81 |
return self.model_simplified, self.pareto_chart(self.model_simplified, "Pareto - Modelo Simplificado")
|
82 |
|
83 |
def optimize(self, method='Nelder-Mead'):
|
84 |
+
"""
|
85 |
+
Encuentra los niveles óptimos de los factores para maximizar la respuesta usando el modelo simplificado.
|
86 |
+
|
87 |
+
Args:
|
88 |
+
method (str): Método de optimización a utilizar (por defecto, 'Nelder-Mead').
|
89 |
+
"""
|
90 |
if self.model_simplified is None:
|
91 |
print("Error: Ajusta el modelo simplificado primero.")
|
92 |
return
|
|
|
100 |
self.optimized_results = minimize(objective_function, x0, method=method, bounds=bounds)
|
101 |
self.optimal_levels = self.optimized_results.x
|
102 |
|
103 |
+
# Convertir niveles óptimos de codificados a naturales
|
104 |
optimal_levels_natural = [
|
105 |
+
round(self.coded_to_natural(self.optimal_levels[0], self.x1_name),3),
|
106 |
+
round(self.coded_to_natural(self.optimal_levels[1], self.x2_name),3),
|
107 |
+
round(self.coded_to_natural(self.optimal_levels[2], self.x3_name),3)
|
108 |
]
|
109 |
+
# Crear la tabla de optimización
|
110 |
optimization_table = pd.DataFrame({
|
111 |
'Variable': [self.x1_name, self.x2_name, self.x3_name],
|
112 |
'Nivel Óptimo (Natural)': optimal_levels_natural,
|
|
|
116 |
return optimization_table
|
117 |
|
118 |
def plot_rsm_individual(self, fixed_variable, fixed_level):
|
119 |
+
"""
|
120 |
+
Genera un gráfico de superficie de respuesta (RSM) individual para una configuración específica.
|
121 |
+
|
122 |
+
Args:
|
123 |
+
fixed_variable (str): Nombre de la variable a mantener fija.
|
124 |
+
fixed_level (float): Nivel al que se fija la variable (en unidades naturales).
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
go.Figure: Objeto de figura de Plotly.
|
128 |
+
"""
|
129 |
if self.model_simplified is None:
|
130 |
print("Error: Ajusta el modelo simplificado primero.")
|
131 |
return None
|
132 |
|
133 |
+
# Determinar las variables que varían y sus niveles naturales
|
134 |
varying_variables = [var for var in [self.x1_name, self.x2_name, self.x3_name] if var != fixed_variable]
|
135 |
|
136 |
+
# Establecer los niveles naturales para las variables que varían
|
137 |
x_natural_levels = self.get_levels(varying_variables[0])
|
138 |
y_natural_levels = self.get_levels(varying_variables[1])
|
139 |
|
140 |
+
# Crear una malla de puntos para las variables que varían (en unidades naturales)
|
141 |
x_range_natural = np.linspace(x_natural_levels[0], x_natural_levels[-1], 100)
|
142 |
y_range_natural = np.linspace(y_natural_levels[0], y_natural_levels[-1], 100)
|
143 |
x_grid_natural, y_grid_natural = np.meshgrid(x_range_natural, y_range_natural)
|
144 |
|
145 |
+
# Convertir la malla de variables naturales a codificadas
|
146 |
x_grid_coded = self.natural_to_coded(x_grid_natural, varying_variables[0])
|
147 |
y_grid_coded = self.natural_to_coded(y_grid_natural, varying_variables[1])
|
148 |
|
149 |
+
# Crear un DataFrame para la predicción con variables codificadas
|
150 |
prediction_data = pd.DataFrame({
|
151 |
varying_variables[0]: x_grid_coded.flatten(),
|
152 |
varying_variables[1]: y_grid_coded.flatten(),
|
153 |
})
|
154 |
prediction_data[fixed_variable] = self.natural_to_coded(fixed_level, fixed_variable)
|
155 |
|
156 |
+
# Calcular los valores predichos
|
157 |
z_pred = self.model_simplified.predict(prediction_data).values.reshape(x_grid_coded.shape)
|
158 |
|
159 |
+
# 1. Identificar los dos factores que varían
|
160 |
varying_variables = [var for var in [self.x1_name, self.x2_name, self.x3_name] if var != fixed_variable]
|
161 |
|
162 |
+
# 2. Filtrar por el nivel de la variable fija (en codificado)
|
163 |
fixed_level_coded = self.natural_to_coded(fixed_level, fixed_variable)
|
164 |
subset_data = self.data[np.isclose(self.data[fixed_variable], fixed_level_coded)]
|
165 |
|
166 |
+
# 3. Filtrar por niveles válidos en las variables que varían
|
167 |
valid_levels = [-1, 0, 1]
|
168 |
experiments_data = subset_data[
|
169 |
subset_data[varying_variables[0]].isin(valid_levels) &
|
170 |
subset_data[varying_variables[1]].isin(valid_levels)
|
171 |
]
|
172 |
|
173 |
+
# Convertir coordenadas de experimentos a naturales
|
174 |
experiments_x_natural = experiments_data[varying_variables[0]].apply(lambda x: self.coded_to_natural(x, varying_variables[0]))
|
175 |
experiments_y_natural = experiments_data[varying_variables[1]].apply(lambda x: self.coded_to_natural(x, varying_variables[1]))
|
176 |
|
177 |
+
# Crear el gráfico de superficie con variables naturales en los ejes y transparencia
|
178 |
fig = go.Figure(data=[go.Surface(z=z_pred, x=x_grid_natural, y=y_grid_natural, colorscale='Viridis', opacity=0.7, showscale=True)])
|
179 |
|
180 |
+
# --- Añadir cuadrícula a la superficie ---
|
181 |
+
# Líneas en la dirección x
|
182 |
for i in range(x_grid_natural.shape[0]):
|
183 |
fig.add_trace(go.Scatter3d(
|
184 |
x=x_grid_natural[i, :],
|
|
|
189 |
showlegend=False,
|
190 |
hoverinfo='skip'
|
191 |
))
|
192 |
+
# Líneas en la dirección y
|
193 |
for j in range(x_grid_natural.shape[1]):
|
194 |
fig.add_trace(go.Scatter3d(
|
195 |
x=x_grid_natural[:, j],
|
|
|
201 |
hoverinfo='skip'
|
202 |
))
|
203 |
|
204 |
+
# --- Fin de la adición de la cuadrícula ---
|
205 |
+
|
206 |
+
# Añadir los puntos de los experimentos en la superficie de respuesta con diferentes colores y etiquetas
|
207 |
+
# Crear una lista de colores y etiquetas para los puntos
|
208 |
colors = ['red', 'blue', 'green', 'purple', 'orange', 'yellow', 'cyan', 'magenta']
|
209 |
point_labels = []
|
210 |
for i, row in experiments_data.iterrows():
|
211 |
+
point_labels.append(f"{row[self.y_name]:.3f}")
|
212 |
|
213 |
fig.add_trace(go.Scatter3d(
|
214 |
x=experiments_x_natural,
|
215 |
y=experiments_y_natural,
|
216 |
z=experiments_data[self.y_name],
|
217 |
mode='markers+text',
|
218 |
+
marker=dict(size=4, color=colors[:len(experiments_x_natural)]), # Usar colores de la lista
|
219 |
+
text=point_labels, # Usar las etiquetas creadas
|
220 |
textposition='top center',
|
221 |
name='Experimentos'
|
222 |
))
|
223 |
|
224 |
+
# Añadir etiquetas y título con variables naturales
|
225 |
fig.update_layout(
|
226 |
scene=dict(
|
227 |
xaxis_title=varying_variables[0] + " (g/L)",
|
228 |
yaxis_title=varying_variables[1] + " (g/L)",
|
229 |
zaxis_title=self.y_name,
|
230 |
+
# Puedes mantener la configuración de grid en los planos si lo deseas
|
231 |
+
# xaxis=dict(showgrid=True, gridwidth=1, gridcolor='lightgray'),
|
232 |
+
# yaxis=dict(showgrid=True, gridwidth=1, gridcolor='lightgray'),
|
233 |
+
# zaxis=dict(showgrid=True, gridwidth=1, gridcolor='lightgray')
|
234 |
),
|
235 |
+
title=f"{self.y_name} vs {varying_variables[0]} y {varying_variables[1]}<br><sup>{fixed_variable} fijo en {fixed_level:.3f} (g/L) (Modelo Simplificado)</sup>",
|
236 |
height=800,
|
237 |
width=1000,
|
238 |
showlegend=True
|
|
|
240 |
return fig
|
241 |
|
242 |
def generate_all_plots(self):
|
243 |
+
"""
|
244 |
+
Genera todas las gráficas de RSM, variando la variable fija y sus niveles usando el modelo simplificado.
|
245 |
+
"""
|
246 |
if self.model_simplified is None:
|
247 |
print("Error: Ajusta el modelo simplificado primero.")
|
248 |
+
return []
|
249 |
|
250 |
+
# Niveles naturales para graficar
|
251 |
levels_to_plot_natural = {
|
252 |
self.x1_name: self.x1_levels,
|
253 |
self.x2_name: self.x2_levels,
|
254 |
self.x3_name: self.x3_levels
|
255 |
}
|
|
|
|
|
256 |
|
257 |
+
# Generar gráficos individuales
|
258 |
+
figures = []
|
259 |
for fixed_variable in [self.x1_name, self.x2_name, self.x3_name]:
|
260 |
for level in levels_to_plot_natural[fixed_variable]:
|
261 |
fig = self.plot_rsm_individual(fixed_variable, level)
|
262 |
if fig is not None:
|
263 |
+
figures.append(fig)
|
264 |
+
return figures
|
265 |
|
266 |
def coded_to_natural(self, coded_value, variable_name):
|
267 |
+
"""Convierte un valor codificado a su valor natural."""
|
268 |
levels = self.get_levels(variable_name)
|
269 |
return levels[0] + (coded_value + 1) * (levels[-1] - levels[0]) / 2
|
270 |
|
271 |
def natural_to_coded(self, natural_value, variable_name):
|
272 |
+
"""Convierte un valor natural a su valor codificado."""
|
273 |
levels = self.get_levels(variable_name)
|
274 |
return -1 + 2 * (natural_value - levels[0]) / (levels[-1] - levels[0])
|
275 |
|
276 |
def pareto_chart(self, model, title):
|
277 |
+
"""
|
278 |
+
Genera un diagrama de Pareto para los efectos estandarizados de un modelo,
|
279 |
+
incluyendo la línea de significancia.
|
280 |
+
|
281 |
+
Args:
|
282 |
+
model: Modelo ajustado de statsmodels.
|
283 |
+
title (str): Título del gráfico.
|
284 |
+
"""
|
285 |
+
# Calcular los efectos estandarizados
|
286 |
+
tvalues = model.tvalues[1:] # Excluir la Intercept
|
287 |
abs_tvalues = np.abs(tvalues)
|
288 |
sorted_idx = np.argsort(abs_tvalues)[::-1]
|
289 |
sorted_tvalues = abs_tvalues[sorted_idx]
|
290 |
sorted_names = tvalues.index[sorted_idx]
|
291 |
|
292 |
+
# Calcular el valor crítico de t para la línea de significancia
|
293 |
+
alpha = 0.05 # Nivel de significancia
|
294 |
+
dof = model.df_resid # Grados de libertad residuales
|
295 |
t_critical = t.ppf(1 - alpha / 2, dof)
|
296 |
|
297 |
+
# Crear el diagrama de Pareto
|
298 |
fig = px.bar(
|
299 |
x=sorted_tvalues,
|
300 |
y=sorted_names,
|
|
|
304 |
)
|
305 |
fig.update_yaxes(autorange="reversed")
|
306 |
|
307 |
+
# Agregar la línea de significancia
|
308 |
fig.add_vline(x=t_critical, line_dash="dot",
|
309 |
+
annotation_text=f"t crítico = {t_critical:.3f}",
|
310 |
annotation_position="bottom right")
|
311 |
|
312 |
return fig
|
313 |
|
314 |
def get_simplified_equation(self):
|
315 |
+
"""
|
316 |
+
Imprime la ecuación del modelo simplificado.
|
317 |
+
"""
|
318 |
if self.model_simplified is None:
|
319 |
print("Error: Ajusta el modelo simplificado primero.")
|
320 |
return None
|
|
|
340 |
return equation
|
341 |
|
342 |
def generate_prediction_table(self):
|
343 |
+
"""
|
344 |
+
Genera una tabla con los valores actuales, predichos y residuales.
|
345 |
+
"""
|
346 |
if self.model_simplified is None:
|
347 |
print("Error: Ajusta el modelo simplificado primero.")
|
348 |
return None
|
349 |
|
350 |
+
self.data['Predicho'] = self.model_simplified.predict(self.data).round(3)
|
351 |
+
self.data['Residual'] = (self.data[self.y_name] - self.data['Predicho']).round(3)
|
|
|
|
|
|
|
|
|
|
|
352 |
|
353 |
+
return self.data[[self.y_name, 'Predicho', 'Residual']]
|
354 |
|
355 |
def calculate_contribution_percentage(self):
|
356 |
+
"""
|
357 |
+
Calcula el porcentaje de contribución de cada factor a la variabilidad de la respuesta (AIA).
|
358 |
+
"""
|
359 |
if self.model_simplified is None:
|
360 |
print("Error: Ajusta el modelo simplificado primero.")
|
361 |
return None
|
362 |
|
363 |
+
# ANOVA del modelo simplificado
|
364 |
anova_table = sm.stats.anova_lm(self.model_simplified, typ=2)
|
365 |
+
|
366 |
+
# Suma de cuadrados total
|
367 |
ss_total = anova_table['sum_sq'].sum()
|
368 |
|
369 |
+
# Crear tabla de contribución
|
370 |
contribution_table = pd.DataFrame({
|
371 |
'Factor': [],
|
372 |
'Suma de Cuadrados': [],
|
373 |
'% Contribución': []
|
374 |
})
|
375 |
|
376 |
+
# Calcular porcentaje de contribución para cada factor
|
377 |
for index, row in anova_table.iterrows():
|
378 |
if index != 'Residual':
|
379 |
factor_name = index
|
|
|
385 |
factor_name = f'{self.x3_name}^2'
|
386 |
|
387 |
ss_factor = row['sum_sq']
|
388 |
+
contribution_percentage = round((ss_factor / ss_total) * 100, 3)
|
389 |
|
390 |
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
391 |
'Factor': [factor_name],
|
392 |
+
'Suma de Cuadrados': [round(ss_factor,3)],
|
393 |
+
'% Contribución': [contribution_percentage]
|
394 |
})], ignore_index=True)
|
395 |
|
396 |
return contribution_table
|
397 |
|
398 |
def calculate_detailed_anova(self):
|
399 |
+
"""
|
400 |
+
Calcula la tabla ANOVA detallada con la descomposición del error residual.
|
401 |
+
"""
|
402 |
if self.model_simplified is None:
|
403 |
print("Error: Ajusta el modelo simplificado primero.")
|
404 |
return None
|
405 |
|
406 |
+
# --- ANOVA detallada ---
|
407 |
+
# 1. Ajustar un modelo solo con los términos de primer orden y cuadráticos
|
408 |
formula_reduced = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
|
409 |
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)'
|
410 |
model_reduced = smf.ols(formula_reduced, data=self.data).fit()
|
411 |
|
412 |
+
# 2. ANOVA del modelo reducido (para obtener la suma de cuadrados de la regresión)
|
413 |
anova_reduced = sm.stats.anova_lm(model_reduced, typ=2)
|
414 |
|
415 |
+
# 3. Suma de cuadrados total
|
416 |
ss_total = np.sum((self.data[self.y_name] - self.data[self.y_name].mean())**2)
|
417 |
|
418 |
+
# 4. Grados de libertad totales
|
419 |
df_total = len(self.data) - 1
|
420 |
|
421 |
+
# 5. Suma de cuadrados de la regresión
|
422 |
+
ss_regression = anova_reduced['sum_sq'][:-1].sum() # Sumar todo excepto 'Residual'
|
423 |
|
424 |
+
# 6. Grados de libertad de la regresión
|
425 |
df_regression = len(anova_reduced) - 1
|
426 |
|
427 |
+
# 7. Suma de cuadrados del error residual
|
428 |
ss_residual = self.model_simplified.ssr
|
429 |
df_residual = self.model_simplified.df_resid
|
430 |
|
431 |
+
# 8. Suma de cuadrados del error puro (se calcula a partir de las réplicas)
|
432 |
replicas = self.data[self.data.duplicated(subset=[self.x1_name, self.x2_name, self.x3_name], keep=False)]
|
433 |
ss_pure_error = replicas.groupby([self.x1_name, self.x2_name, self.x3_name])[self.y_name].var().sum()
|
434 |
df_pure_error = len(replicas) - len(replicas.groupby([self.x1_name, self.x2_name, self.x3_name]))
|
435 |
|
436 |
+
# 9. Suma de cuadrados de la falta de ajuste
|
437 |
ss_lack_of_fit = ss_residual - ss_pure_error
|
438 |
df_lack_of_fit = df_residual - df_pure_error
|
439 |
|
440 |
+
# 10. Cuadrados medios
|
441 |
ms_regression = ss_regression / df_regression
|
442 |
ms_residual = ss_residual / df_residual
|
443 |
ms_lack_of_fit = ss_lack_of_fit / df_lack_of_fit
|
444 |
ms_pure_error = ss_pure_error / df_pure_error
|
445 |
|
446 |
+
# 11. Estadístico F y valor p para la falta de ajuste
|
447 |
f_lack_of_fit = ms_lack_of_fit / ms_pure_error
|
448 |
+
p_lack_of_fit = 1 - f.cdf(f_lack_of_fit, df_lack_of_fit, df_pure_error) # Usar f.cdf de scipy.stats
|
449 |
|
450 |
+
# 12. Crear la tabla ANOVA detallada
|
451 |
detailed_anova_table = pd.DataFrame({
|
452 |
'Fuente de Variación': ['Regresión', 'Residual', 'Falta de Ajuste', 'Error Puro', 'Total'],
|
453 |
+
'Suma de Cuadrados': [round(ss_regression,3), round(ss_residual,3), round(ss_lack_of_fit,3), round(ss_pure_error,3), round(ss_total,3)],
|
454 |
'Grados de Libertad': [df_regression, df_residual, df_lack_of_fit, df_pure_error, df_total],
|
455 |
+
'Cuadrado Medio': [round(ms_regression,3), round(ms_residual,3), round(ms_lack_of_fit,3), round(ms_pure_error,3), np.nan],
|
456 |
+
'F': [np.nan, np.nan, round(f_lack_of_fit,3), np.nan, np.nan],
|
457 |
+
'Valor p': [np.nan, np.nan, round(p_lack_of_fit,3), np.nan, np.nan]
|
458 |
})
|
459 |
|
460 |
+
# Calcular la suma de cuadrados y grados de libertad para la curvatura
|
461 |
ss_curvature = anova_reduced['sum_sq'][f'I({self.x1_name} ** 2)'] + anova_reduced['sum_sq'][f'I({self.x2_name} ** 2)'] + anova_reduced['sum_sq'][f'I({self.x3_name} ** 2)']
|
462 |
df_curvature = 3
|
463 |
|
464 |
+
# Añadir la fila de curvatura a la tabla ANOVA
|
465 |
+
detailed_anova_table.loc[len(detailed_anova_table)] = ['Curvatura', round(ss_curvature,3), df_curvature, round(ss_curvature / df_curvature,3), np.nan, np.nan]
|
466 |
|
467 |
+
# Reorganizar las filas para que la curvatura aparezca después de la regresión
|
468 |
detailed_anova_table = detailed_anova_table.reindex([0, 5, 1, 2, 3, 4])
|
469 |
|
470 |
+
# Resetear el índice para que sea consecutivo
|
471 |
detailed_anova_table = detailed_anova_table.reset_index(drop=True)
|
472 |
|
473 |
return detailed_anova_table
|
|
|
475 |
# --- Funciones para la interfaz de Gradio ---
|
476 |
|
477 |
def load_data(x1_name, x2_name, x3_name, y_name, x1_levels_str, x2_levels_str, x3_levels_str, data_str):
|
478 |
+
"""
|
479 |
+
Carga los datos del diseño Box-Behnken desde cajas de texto y crea la instancia de RSM_BoxBehnken.
|
480 |
+
|
481 |
+
Args:
|
482 |
+
x1_name (str): Nombre de la primera variable independiente.
|
483 |
+
x2_name (str): Nombre de la segunda variable independiente.
|
484 |
+
x3_name (str): Nombre de la tercera variable independiente.
|
485 |
+
y_name (str): Nombre de la variable dependiente.
|
486 |
+
x1_levels_str (str): Niveles de la primera variable, separados por comas.
|
487 |
+
x2_levels_str (str): Niveles de la segunda variable, separados por comas.
|
488 |
+
x3_levels_str (str): Niveles de la tercera variable, separados por comas.
|
489 |
+
data_str (str): Datos del experimento en formato CSV, separados por comas.
|
490 |
+
|
491 |
+
Returns:
|
492 |
+
tuple: (pd.DataFrame, str, str, str, str, list, list, list, gr.update)
|
493 |
+
"""
|
494 |
try:
|
495 |
+
# Convertir los niveles a listas de números
|
496 |
x1_levels = [float(x.strip()) for x in x1_levels_str.split(',')]
|
497 |
x2_levels = [float(x.strip()) for x in x2_levels_str.split(',')]
|
498 |
x3_levels = [float(x.strip()) for x in x3_levels_str.split(',')]
|
499 |
|
500 |
+
# Crear DataFrame a partir de la cadena de datos
|
501 |
data_list = [row.split(',') for row in data_str.strip().split('\n')]
|
502 |
column_names = ['Exp.', x1_name, x2_name, x3_name, y_name]
|
503 |
data = pd.DataFrame(data_list, columns=column_names)
|
504 |
+
data = data.apply(pd.to_numeric, errors='coerce') # Convertir a numérico
|
505 |
|
506 |
+
# Validar que el DataFrame tenga las columnas correctas
|
507 |
if not all(col in data.columns for col in column_names):
|
508 |
raise ValueError("El formato de los datos no es correcto.")
|
509 |
|
510 |
+
# Crear la instancia de RSM_BoxBehnken
|
511 |
global rsm
|
512 |
rsm = RSM_BoxBehnken(data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels)
|
513 |
|
|
|
518 |
|
519 |
def fit_and_optimize_model():
|
520 |
if 'rsm' not in globals():
|
521 |
+
return None, None, None, None, None, None, None, None, None, "Error: Carga los datos primero."
|
522 |
|
523 |
model_completo, pareto_completo = rsm.fit_model()
|
524 |
model_simplificado, pareto_simplificado = rsm.fit_simplified_model()
|
|
|
527 |
prediction_table = rsm.generate_prediction_table()
|
528 |
contribution_table = rsm.calculate_contribution_percentage()
|
529 |
anova_table = rsm.calculate_detailed_anova()
|
530 |
+
|
531 |
+
# Generar todos los gráficos de superficie de respuesta
|
532 |
+
rsm_plots = rsm.generate_all_plots()
|
533 |
+
|
534 |
+
# Formatear la ecuación para que se vea mejor en Markdown
|
535 |
equation_formatted = equation.replace(" + ", "<br>+ ").replace(" ** ", "^").replace("*", " × ")
|
536 |
equation_formatted = f"### Ecuación del Modelo Simplificado:<br>{equation_formatted}"
|
|
|
537 |
|
538 |
+
return model_completo.summary().tables[0].as_html(), pareto_completo, model_completo.summary().tables[1].as_html(), model_simplificado.summary().as_html(), pareto_simplificado, equation_formatted, optimization_table, prediction_table, contribution_table, anova_table, rsm_plots, gr.update(visible=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
539 |
|
540 |
+
def generate_rsm_plot(plot_index):
|
541 |
+
if 'rsm_plots' not in globals() or not rsm_plots:
|
542 |
+
return None, gr.update(visible=False), "Error: Genera los gráficos primero."
|
543 |
+
|
544 |
+
plot_index = int(plot_index)
|
545 |
+
if 0 <= plot_index < len(rsm_plots):
|
546 |
+
selected_plot = rsm_plots[plot_index]
|
547 |
+
return selected_plot, gr.update(visible=True, value=plot_index)
|
548 |
+
else:
|
549 |
+
return None, gr.update(visible=False), "Error: Índice de gráfico fuera de rango."
|
550 |
|
551 |
def download_excel():
|
552 |
if 'rsm' not in globals():
|
553 |
+
return None, "Error: Carga los datos y ajusta el modelo primero."
|
554 |
|
555 |
+
output = io.BytesIO()
|
556 |
+
with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
|
|
|
|
|
557 |
rsm.data.to_excel(writer, sheet_name='Datos', index=False)
|
558 |
rsm.generate_prediction_table().to_excel(writer, sheet_name='Predicciones', index=False)
|
|
|
559 |
rsm.calculate_contribution_percentage().to_excel(writer, sheet_name='Contribucion', index=False)
|
560 |
rsm.calculate_detailed_anova().to_excel(writer, sheet_name='ANOVA', index=False)
|
561 |
+
rsm.optimize().to_excel(writer, sheet_name='Optimizacion', index=False)
|
562 |
+
# Aquí puedes agregar más tablas a diferentes hojas si es necesario
|
563 |
+
|
564 |
+
excel_data = output.getvalue()
|
565 |
+
b64 = b64encode(excel_data).decode('utf-8')
|
566 |
+
href = f'<a download="resultados_rsm.xlsx" href="data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64,{b64}">Descargar Excel</a>'
|
567 |
+
return href
|
568 |
+
|
569 |
+
def download_selected_image(plot_index):
|
570 |
+
if 'rsm_plots' not in globals() or not rsm_plots:
|
571 |
+
return None, "Error: Genera los gráficos primero."
|
572 |
+
|
573 |
+
plot_index = int(plot_index)
|
574 |
+
if 0 <= plot_index < len(rsm_plots):
|
575 |
+
selected_plot = rsm_plots[plot_index]
|
576 |
+
img_bytes = selected_plot.to_image(format="png")
|
577 |
+
b64 = b64encode(img_bytes).decode('utf-8')
|
578 |
+
href = f'<a download="grafico_rsm_{plot_index}.png" href="data:image/png;base64,{b64}">Descargar Gráfico {plot_index}</a>'
|
579 |
+
return href
|
580 |
+
else:
|
581 |
+
return None, "Error: Índice de gráfico fuera de rango."
|
582 |
+
|
583 |
+
def download_all_images():
|
584 |
+
if 'rsm_plots' not in globals() or not rsm_plots:
|
585 |
+
return None, "Error: Genera los gráficos primero."
|
586 |
+
|
587 |
+
zip_output = io.BytesIO()
|
588 |
+
with zipfile.ZipFile(zip_output, 'w') as zipf:
|
589 |
+
for i, fig in enumerate(rsm_plots):
|
590 |
img_bytes = fig.to_image(format="png")
|
591 |
+
zipf.writestr(f"grafico_rsm_{i}.png", img_bytes)
|
|
|
|
|
592 |
|
593 |
+
zip_data = zip_output.getvalue()
|
594 |
+
b64 = b64encode(zip_data).decode('utf-8')
|
595 |
+
href = f'<a download="graficos_rsm.zip" href="data:application/zip;base64,{b64}">Descargar Todos los Gráficos</a>'
|
596 |
+
return href
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
597 |
|
598 |
# --- Crear la interfaz de Gradio ---
|
599 |
|
|
|
632 |
gr.Markdown("## Datos Cargados")
|
633 |
data_output = gr.Dataframe(label="Tabla de Datos")
|
634 |
|
635 |
+
# Hacer que la sección de análisis y gráficos sea visible solo después de cargar los datos
|
636 |
with gr.Row(visible=False) as analysis_row:
|
637 |
with gr.Column():
|
638 |
fit_button = gr.Button("Ajustar Modelo y Optimizar")
|
|
|
639 |
gr.Markdown("**Modelo Completo**")
|
640 |
+
with gr.Row():
|
641 |
+
model_completo_output1 = gr.HTML(label="Tabla de Coeficientes")
|
642 |
+
pareto_completo_output = gr.Plot(label="Pareto Modelo Completo")
|
643 |
+
model_completo_output2 = gr.HTML(label="Tabla de ANOVA")
|
644 |
gr.Markdown("**Modelo Simplificado**")
|
645 |
+
with gr.Row():
|
646 |
+
model_simplificado_output = gr.HTML(label="Tabla de Coeficientes")
|
647 |
+
pareto_simplificado_output = gr.Plot(label="Pareto Modelo Simplificado")
|
648 |
+
equation_output = gr.HTML(label="Ecuación del Modelo Simplificado")
|
649 |
+
optimization_table_output = gr.Dataframe(label="Tabla de Optimización")
|
650 |
prediction_table_output = gr.Dataframe(label="Tabla de Predicciones")
|
651 |
contribution_table_output = gr.Dataframe(label="Tabla de % de Contribución")
|
652 |
anova_table_output = gr.Dataframe(label="Tabla ANOVA Detallada")
|
653 |
+
|
654 |
+
# Botones de descarga
|
655 |
+
download_excel_button = gr.HTML("Descargar Excel")
|
656 |
+
download_all_images_button = gr.HTML("Descargar Todos los Gráficos")
|
657 |
+
|
658 |
with gr.Column():
|
659 |
+
gr.Markdown("## Gráficos de Superficie de Respuesta")
|
|
|
|
|
660 |
with gr.Row():
|
661 |
+
plot_index_slider = gr.Number(label="Índice del Gráfico", value=0, step=1, minimum=0, maximum=8)
|
662 |
+
previous_plot_button = gr.Button("Anterior")
|
663 |
+
next_plot_button = gr.Button("Siguiente")
|
664 |
+
rsm_plot_output = gr.Plot(label="Superficie de Respuesta")
|
665 |
+
download_image_button = gr.HTML("Descargar Gráfico")
|
|
|
|
|
666 |
|
667 |
+
# Funcionalidad de los botones
|
668 |
load_button.click(
|
669 |
load_data,
|
670 |
inputs=[x1_name_input, x2_name_input, x3_name_input, y_name_input, x1_levels_input, x2_levels_input, x3_levels_input, data_input],
|
671 |
outputs=[data_output, x1_name_input, x2_name_input, x3_name_input, y_name_input, x1_levels_input, x2_levels_input, x3_levels_input, analysis_row]
|
672 |
)
|
673 |
|
674 |
+
fit_button.click(
|
675 |
+
fit_and_optimize_model,
|
676 |
+
outputs=[model_completo_output1, pareto_completo_output, model_completo_output2, model_simplificado_output, pareto_simplificado_output, equation_output, optimization_table_output, prediction_table_output, contribution_table_output, anova_table_output, rsm_plots, plot_index_slider]
|
677 |
+
)
|
678 |
|
679 |
+
previous_plot_button.click(
|
680 |
+
generate_rsm_plot,
|
681 |
+
inputs=[plot_index_slider],
|
682 |
+
outputs=[rsm_plot_output, plot_index_slider]
|
683 |
+
).then(lambda x: x - 1 if x > 0 else x, plot_index_slider, plot_index_slider)
|
684 |
+
|
685 |
+
next_plot_button.click(
|
686 |
+
generate_rsm_plot,
|
687 |
+
inputs=[plot_index_slider],
|
688 |
+
outputs=[rsm_plot_output, plot_index_slider]
|
689 |
+
).then(lambda x: x + 1 if x < 8 else x, plot_index_slider, plot_index_slider)
|
690 |
+
|
691 |
+
plot_index_slider.change(
|
692 |
+
generate_rsm_plot,
|
693 |
+
inputs=[plot_index_slider],
|
694 |
+
outputs=[rsm_plot_output, plot_index_slider]
|
695 |
+
)
|
696 |
|
697 |
download_excel_button.click(download_excel, outputs=[download_excel_button])
|
698 |
+
download_image_button.click(download_selected_image, inputs=[plot_index_slider], outputs=[download_image_button])
|
699 |
+
download_all_images_button.click(download_all_images, outputs=[download_all_images_button])
|
|
|
|
|
|
|
|
|
700 |
|
701 |
# Ejemplo de uso
|
702 |
gr.Markdown("## Ejemplo de uso")
|
|
|
704 |
gr.Markdown("2. Copia y pega los datos del experimento en la caja de texto 'Datos del Experimento'.")
|
705 |
gr.Markdown("3. Haz clic en 'Cargar Datos' para cargar los datos en la tabla.")
|
706 |
gr.Markdown("4. Haz clic en 'Ajustar Modelo y Optimizar' para ajustar el modelo y encontrar los niveles óptimos de los factores.")
|
707 |
+
gr.Markdown("5. Navega por los gráficos de superficie de respuesta usando los botones 'Anterior' y 'Siguiente' o el control deslizante.")
|
708 |
+
gr.Markdown("6. Haz clic en 'Descargar Excel' para descargar un archivo Excel con todas las tablas.")
|
709 |
+
gr.Markdown("7. Haz clic en 'Descargar Gráfico' para descargar la imagen del gráfico actual.")
|
710 |
+
gr.Markdown("8. Haz clic en 'Descargar Todos los Gráficos' para descargar un archivo zip con todas las imágenes de los gráficos.")
|
|
|
|
|
711 |
|
712 |
demo.launch()
|