Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,7 @@ import plotly.graph_objects as go
|
|
5 |
import gradio as gr
|
6 |
from gradio.components import Plot
|
7 |
|
8 |
-
#
|
9 |
|
10 |
cities_data = {
|
11 |
'Abancay': {
|
@@ -1151,7 +1151,7 @@ cities_data = {
|
|
1151 |
}
|
1152 |
|
1153 |
|
1154 |
-
#
|
1155 |
|
1156 |
COLORES = {
|
1157 |
'Total': '#2C3E50',
|
@@ -1255,11 +1255,12 @@ def crear_radar_plot(dfs):
|
|
1255 |
fig.update_layout(
|
1256 |
polar=dict(
|
1257 |
radialaxis=dict(visible=True, range=[0, 100], tickfont=dict(size=12)),
|
1258 |
-
angularaxis=dict(rotation=90, direction='clockwise', tickfont=dict(size=14))
|
|
|
1259 |
title=dict(text='Radar de Indicadores Laborales', x=0.5, font=dict(size=20)),
|
1260 |
showlegend=False,
|
1261 |
height=500
|
1262 |
-
)
|
1263 |
|
1264 |
return fig
|
1265 |
|
@@ -1343,6 +1344,27 @@ def generar_analisis_global():
|
|
1343 |
|
1344 |
return figs
|
1345 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1346 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue"), css=".gradio-container {background-color: white}") as app:
|
1347 |
gr.Markdown("# 📊 Dashboard Analítico del Mercado Laboral")
|
1348 |
|
@@ -1386,25 +1408,4 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue"), css=".gradio-container
|
|
1386 |
outputs=[global_desempleo, global_ingresos, global_brecha]
|
1387 |
)
|
1388 |
|
1389 |
-
def actualizar_graficos(ciudad):
|
1390 |
-
data = cities_data[ciudad]
|
1391 |
-
|
1392 |
-
dfs = {
|
1393 |
-
'desempleo': procesar_dataframe(data['desempleo_trimestral'], ["Trimestre", "Total", "Hombres", "Mujeres"]),
|
1394 |
-
'ingresos': procesar_dataframe(data['ingresos_periodo'], ["Periodo", "Total", "Hombres", "Mujeres"]),
|
1395 |
-
'informal': procesar_dataframe(data['informal_periodo'], ["Periodo", "Total", "Hombres", "Mujeres"]),
|
1396 |
-
'actividad': procesar_dataframe(data['actividad_trimestral'], ["Trimestre", "Total", "Hombres", "Mujeres"])
|
1397 |
-
}
|
1398 |
-
|
1399 |
-
return [
|
1400 |
-
crear_grafico_lineas(dfs['desempleo'], "Tasa de Desempleo", "%", ".1f"),
|
1401 |
-
crear_grafico_lineas(dfs['ingresos'], "Ingresos Promedio", "Soles", ".0f"),
|
1402 |
-
crear_grafico_lineas(dfs['informal'], "Tasa de Informalidad", "%", ".1f"),
|
1403 |
-
crear_grafico_lineas(dfs['actividad'], "Tasa de Actividad", "%", ".1f"),
|
1404 |
-
crear_radar_plot(dfs),
|
1405 |
-
crear_grafico_lineas(dfs['ingresos'].assign(
|
1406 |
-
Brecha=lambda x: (x['Hombres'] - x['Mujeres']) / x['Hombres'].replace(0, np.nan) * 100
|
1407 |
-
), "Brecha Salarial", "%", ".1f")
|
1408 |
-
]
|
1409 |
-
|
1410 |
app.launch(debug=True)
|
|
|
5 |
import gradio as gr
|
6 |
from gradio.components import Plot
|
7 |
|
8 |
+
#DATOS
|
9 |
|
10 |
cities_data = {
|
11 |
'Abancay': {
|
|
|
1151 |
}
|
1152 |
|
1153 |
|
1154 |
+
#DATOS
|
1155 |
|
1156 |
COLORES = {
|
1157 |
'Total': '#2C3E50',
|
|
|
1255 |
fig.update_layout(
|
1256 |
polar=dict(
|
1257 |
radialaxis=dict(visible=True, range=[0, 100], tickfont=dict(size=12)),
|
1258 |
+
angularaxis=dict(rotation=90, direction='clockwise', tickfont=dict(size=14))
|
1259 |
+
),
|
1260 |
title=dict(text='Radar de Indicadores Laborales', x=0.5, font=dict(size=20)),
|
1261 |
showlegend=False,
|
1262 |
height=500
|
1263 |
+
)
|
1264 |
|
1265 |
return fig
|
1266 |
|
|
|
1344 |
|
1345 |
return figs
|
1346 |
|
1347 |
+
def actualizar_graficos(ciudad):
|
1348 |
+
data = cities_data[ciudad]
|
1349 |
+
|
1350 |
+
dfs = {
|
1351 |
+
'desempleo': procesar_dataframe(data['desempleo_trimestral'], ["Trimestre", "Total", "Hombres", "Mujeres"]),
|
1352 |
+
'ingresos': procesar_dataframe(data['ingresos_periodo'], ["Periodo", "Total", "Hombres", "Mujeres"]),
|
1353 |
+
'informal': procesar_dataframe(data['informal_periodo'], ["Periodo", "Total", "Hombres", "Mujeres"]),
|
1354 |
+
'actividad': procesar_dataframe(data['actividad_trimestral'], ["Trimestre", "Total", "Hombres", "Mujeres"])
|
1355 |
+
}
|
1356 |
+
|
1357 |
+
return [
|
1358 |
+
crear_grafico_lineas(dfs['desempleo'], "Tasa de Desempleo", "%", ".1f"),
|
1359 |
+
crear_grafico_lineas(dfs['ingresos'], "Ingresos Promedio", "Soles", ".0f"),
|
1360 |
+
crear_grafico_lineas(dfs['informal'], "Tasa de Informalidad", "%", ".1f"),
|
1361 |
+
crear_grafico_lineas(dfs['actividad'], "Tasa de Actividad", "%", ".1f"),
|
1362 |
+
crear_radar_plot(dfs),
|
1363 |
+
crear_grafico_lineas(dfs['ingresos'].assign(
|
1364 |
+
Brecha=lambda x: (x['Hombres'] - x['Mujeres']) / x['Hombres'].replace(0, np.nan) * 100
|
1365 |
+
), "Brecha Salarial", "%", ".1f")
|
1366 |
+
]
|
1367 |
+
|
1368 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue"), css=".gradio-container {background-color: white}") as app:
|
1369 |
gr.Markdown("# 📊 Dashboard Analítico del Mercado Laboral")
|
1370 |
|
|
|
1408 |
outputs=[global_desempleo, global_ingresos, global_brecha]
|
1409 |
)
|
1410 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1411 |
app.launch(debug=True)
|