Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
import os | |
import spaces | |
import uuid | |
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler | |
from diffusers.utils import export_to_video | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
from PIL import Image | |
# Constants | |
bases = { | |
"ToonYou": "frankjoshua/toonyou_beta6", | |
"epiCRealism": "emilianJR/epiCRealism" | |
} | |
step_loaded = None | |
base_loaded = "ToonYou" | |
motion_loaded = None | |
# Ensure model and scheduler are initialized in GPU-enabled function | |
if not torch.cuda.is_available(): | |
raise NotImplementedError("No GPU detected!") | |
device = "cuda" | |
dtype = torch.float16 | |
pipe = AnimateDiffPipeline.from_pretrained(bases[base_loaded], torch_dtype=dtype).to(device) | |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear") | |
# Safety checkers | |
from safety_checker import StableDiffusionSafetyChecker | |
from transformers import CLIPFeatureExtractor | |
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker").to(device) | |
feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32") | |
def check_nsfw_images(images: list[Image.Image]) -> list[bool]: | |
safety_checker_input = feature_extractor(images, return_tensors="pt").to(device) | |
has_nsfw_concepts = safety_checker(images=[images], clip_input=safety_checker_input.pixel_values.to(device)) | |
return has_nsfw_concepts | |
# Function | |
def generate_image(prompt, base, motion, step, progress=gr.Progress()): | |
global step_loaded | |
global base_loaded | |
global motion_loaded | |
print(prompt, base, step) | |
if step_loaded != step: | |
repo = "ByteDance/AnimateDiff-Lightning" | |
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors" | |
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False) | |
step_loaded = step | |
if base_loaded != base: | |
pipe.unet.load_state_dict(torch.load(hf_hub_download(bases[base], "unet/diffusion_pytorch_model.bin"), map_location=device), strict=False) | |
base_loaded = base | |
if motion_loaded != motion: | |
pipe.unload_lora_weights() | |
if motion != "": | |
pipe.load_lora_weights(motion, adapter_name="motion") | |
pipe.set_adapters(["motion"], [0.7]) | |
motion_loaded = motion | |
progress((0, step)) | |
def progress_callback(i, t, z): | |
progress((i+1, step)) | |
output = pipe(prompt=prompt, guidance_scale=1.0, num_inference_steps=step, callback=progress_callback, callback_steps=1) | |
has_nsfw_concepts = check_nsfw_images([output.frames[0][0]]) | |
if has_nsfw_concepts[0]: | |
gr.Warning("NSFW content detected.") | |
return None | |
name = str(uuid.uuid4()).replace("-", "") | |
path = f"/tmp/{name}.mp4" | |
export_to_video(output.frames[0], path, fps=10) | |
return path | |
# Gradio Interface | |
with gr.Blocks(css="style.css") as demo: | |
gr.HTML( | |
"<h1><center>AnimateDiff-Lightning ⚡</center></h1>" + | |
"<p><center>Lightning-fast text-to-video generation</center></p>" | |
) | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Textbox( | |
label='Prompt (English)' | |
) | |
with gr.Row(): | |
select_base = gr.Dropdown( | |
label='Base model', | |
choices=[ | |
"ToonYou", | |
"epiCRealism", | |
], | |
value=base_loaded, | |
interactive=True | |
) | |
select_motion = gr.Dropdown( | |
label='Motion', | |
choices=[ | |
("Default", ""), | |
("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"), | |
("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"), | |
("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"), | |
("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"), | |
("Pan left", "guoyww/animatediff-motion-lora-pan-left"), | |
("Pan right", "guoyww/animatediff-motion-lora-pan-right"), | |
("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"), | |
("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"), | |
], | |
value="", | |
interactive=True | |
) | |
select_step = gr.Dropdown( | |
label='Inference steps', | |
choices=[ | |
('1-Step', 1), | |
('2-Step', 2), | |
('4-Step', 4), | |
('8-Step', 8)], | |
value=4, | |
interactive=True | |
) | |
submit = gr.Button( | |
scale=1, | |
variant='primary' | |
) | |
video = gr.Video( | |
label='AnimateDiff-Lightning', | |
autoplay=True, | |
height=512, | |
width=512, | |
elem_id="video_output" | |
) | |
prompt.submit( | |
fn=generate_image, | |
inputs=[prompt, select_base, select_motion, select_step], | |
outputs=video, | |
) | |
submit.click( | |
fn=generate_image, | |
inputs=[prompt, select_base, select_motion, select_step], | |
outputs=video, | |
) | |
demo.queue().launch() |