File size: 2,152 Bytes
f2eeb87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from transformers import MBartForSequenceClassification, MBart50Tokenizer, TrainingArguments, Trainer
from datasets import Dataset


# Load the model and tokenizer
model_name = "LocalDoc/mbart_large_qa_azerbaijan"  # Replace with your model name if different
tokenizer = MBart50Tokenizer.from_pretrained(model_name)
model = MBartForSequenceClassification.from_pretrained(model_name)
chunk_size = 512

# Prepare the dataset (simplified)
def prepare_text_dataset(data):
    # Split the text into smaller chunks (consider logical divisions of the Constitution)
    chunks = [data[i:i+chunk_size] for i in range(0, len(data), chunk_size)]
    # Convert chunks to dictionaries with a single feature "text"
    formatted_data = [{"text": chunk} for chunk in chunks]
    # Create the dataset from the list of dictionaries
    formatted_dataset = Dataset.from_list(formatted_data)
    # Tokenize the text using the MBart tokenizer
    formatted_dataset = formatted_dataset.map(
        lambda x: tokenizer(x["text"], truncation=True, padding="max_length"),
        batched=True
    )

    # Set the format of the dataset to "torch" for compatibility with the model
    formatted_dataset.set_format("torch")
    # Print a message indicating preparation completion (optional)
    print('Prep done')

    return formatted_dataset


# Load the plain text (replace with your actual loading logic)
with open("constitution.txt", "r", encoding="utf-8") as f:
  constitution_text = f.read()

# Prepare the dataset
train_dataset = prepare_text_dataset(constitution_text)

# Define training arguments
training_args = TrainingArguments(
    output_dir="./results",  # Adjust output directory
    overwrite_output_dir=True,
    num_train_epochs=3,  # Adjust training epochs
    per_device_train_batch_size=1,  # Adjust batch size based on your GPU memory
    save_steps=500,
    save_total_limit=2,
)

# Create the Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
)

# Start training
trainer.train()

# Save the fine-tuned model
model.save_pretrained("./fine-tuned_model")
tokenizer.save_pretrained("./fine-tuned_model")