BroBro87 commited on
Commit
58d2388
·
verified ·
1 Parent(s): 370e34c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -62
app.py CHANGED
@@ -1,64 +1,63 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
  ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from composio_llamaindex import ComposioToolSet, App, Action
3
+ from llama_index.core.agent import FunctionCallingAgentWorker
4
+ from llama_index.core.llms import ChatMessage
5
+ from llama_index.llms.openai import OpenAI
6
+ from dotenv import load_dotenv
7
+
8
+ # Load environment variables
9
+ load_dotenv()
10
+
11
+ # Initialize ComposioToolSet and OpenAI LLM
12
+ toolset = ComposioToolSet(api_key=os.getenv('COMPOSIO_API_KEY'))
13
+ tools = toolset.get_tools(apps=[App.TWITTER])
14
+
15
+ llm = OpenAI(model="gpt-4o", api_key=os.getenv('OPENAI_API_KEY'))
16
+
17
+ # Set up prefix messages for the agent
18
+ prefix_messages = [
19
+ ChatMessage(
20
+ role="system",
21
+ content=(
22
+ f"""
23
+ You are a Twitter wrapped generator. Based on the Twitter username provided, analyze the user's profile, recent tweets, and engagement data.
24
+ Create a personalized "Twitter Wrapped" summary highlighting their top tweets, most engaging content, follower growth, and other key insights.
25
+ Generate the output in a structured JSON format that can be easily parsed programmatically. Include fields like "top_tweets", "engagement_stats", "follower_growth", and "summary_sheet_link".
26
+ """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  ),
28
+ )
29
+ ]
30
+
31
+ # Initialize the agent
32
+ agent = FunctionCallingAgentWorker(
33
+ tools=tools,
34
+ llm=llm,
35
+ prefix_messages=prefix_messages,
36
+ max_function_calls=10,
37
+ allow_parallel_tool_calls=False,
38
+ verbose=True,
39
+ ).as_agent()
40
+
41
+ def generate_wrapped(username):
42
+ """
43
+ Function to generate a "Twitter Wrapped" summary based on the Twitter username provided by the user.
44
+ """
45
+ user_input = f"Create a Twitter Wrapped summary for the username: {username}"
46
+ response = agent.chat(user_input)
47
+ return response
48
+
49
+ # Create Gradio interface
50
+ with gr.Blocks() as demo:
51
+ gr.Markdown("""### Twitter Wrapped Generator
52
+ Enter a Twitter username below to generate your personalized Twitter Wrapped summary.
53
+ """)
54
+
55
+ username_input = gr.Textbox(label="Twitter Username", placeholder="e.g., @elonmusk")
56
+ output = gr.Textbox(label="Output", placeholder="Your Twitter Wrapped summary and Google Sheet link will appear here.", lines=10)
57
+
58
+ generate_button = gr.Button("Generate Wrapped")
59
+
60
+ generate_button.click(fn=generate_wrapped, inputs=username_input, outputs=output)
61
+
62
+ # Launch the Gradio app
63
+ demo.launch()