File size: 11,418 Bytes
bb5b52d
 
 
 
5b1e4ca
bb5b52d
d62bdc3
bb5b52d
5b1e4ca
bb5b52d
 
58d2388
bb5b52d
7edabc5
bb5b52d
 
 
 
3552a63
bb5b52d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62e41c2
bb5b52d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b07e6c
 
 
 
 
55bdbe4
c546cc3
 
940e49e
bb5b52d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22c5443
bb5b52d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3552a63
bb5b52d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58d2388
bb5b52d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
from datetime import datetime, timedelta
from collections import defaultdict, Counter
from llama_index.llms.openai import OpenAI
from composio_llamaindex import ComposioToolSet, App, Action
import gradio as gr
import os
import json
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

llm = OpenAI(model='gpt-4', api_key=os.getenv('OPENAI_API_KEY'))

class CalendarService:
    def __init__(self):
        self.toolset = ComposioToolSet(api_key=os.getenv('COMPOSIO_API_KEY'))
        self.connection_request = None

    def analyze_calendar_events(self, response_data):
        """
        Analyze calendar events and return statistics about meetings.
        """
        current_year = datetime.now().year
        meetings = []
        participants = []
        meeting_times = []
        total_duration = timedelta()
        monthly_meetings = defaultdict(int)
        daily_meetings = defaultdict(int)
        
        events = response_data.get('data', {}).get('event_data', {}).get('event_data', [])
        
        for event in events:
            start_data = event.get('start', {})
            end_data = event.get('end', {})
            
            try:
                start = datetime.fromisoformat(start_data.get('dateTime').replace('Z', '+00:00'))
                end = datetime.fromisoformat(end_data.get('dateTime').replace('Z', '+00:00'))
                
                if start.year == current_year:
                    duration = end - start
                    total_duration += duration
                    
                    monthly_meetings[start.strftime('%B')] += 1
                    daily_meetings[start.strftime('%A')] += 1
                    meeting_times.append(start.strftime('%H:%M'))
                    
                    if 'attendees' in event:
                        for attendee in event['attendees']:
                            if attendee.get('responseStatus') != 'declined':
                                participants.append(attendee.get('email'))
                    
                    organizer_email = event.get('organizer', {}).get('email')
                    if organizer_email:
                        participants.append(organizer_email)
                    
                    meetings.append({
                        'start': start,
                        'duration': duration,
                        'summary': event.get('summary', 'No Title')
                    })
            except (ValueError, TypeError, AttributeError) as e:
                print(f"Error processing event: {e}")
                continue
        
        total_meetings = len(meetings)
        stats = {
            "total_meetings_this_year": total_meetings
        }
        
        if total_meetings > 0:
            stats.update({
                "total_time_spent": str(total_duration),
                "busiest_month": max(monthly_meetings.items(), key=lambda x: x[1])[0] if monthly_meetings else "N/A",
                "busiest_day": max(daily_meetings.items(), key=lambda x: x[1])[0] if daily_meetings else "N/A",
                "most_frequent_participant": Counter(participants).most_common(1)[0][0] if participants else "N/A",
                "average_meeting_duration": str(total_duration / total_meetings),
                "most_common_meeting_time": Counter(meeting_times).most_common(1)[0][0] if meeting_times else "N/A",
                "monthly_breakdown": dict(monthly_meetings),
                "daily_breakdown": dict(daily_meetings)
            })
        else:
            stats.update({
                "total_time_spent": "0:00:00",
                "busiest_month": "N/A",
                "busiest_day": "N/A",
                "most_frequent_participant": "N/A",
                "average_meeting_duration": "0:00:00",
                "most_common_meeting_time": "N/A",
                "monthly_breakdown": {},
                "daily_breakdown": {}
            })
        
        return stats
        
    def initiate_connection(self, entity_id: str, redirect_url: str = "https://calendar-wrapped-eight.vercel.app/") -> dict:
        try:
            self.connection_request = self.toolset.initiate_connection(
                entity_id=entity_id,
                app=App.GOOGLECALENDAR,
            )
            
            return {
                'success': True,
                'data': {
                    'redirect_url': self.connection_request.redirectUrl,
                    'message': "Please authenticate using the provided link."
                }
            }
        except Exception as e:
            return {
                'success': False,
                'error': str(e)
            }
    
    def check_connection_status(self, entity_id: str) -> dict:
        try:
            # if not self.connection_request:
            #     return {
            #         'success': False,
            #         'error': 'No active connection request found'
            #     }
            entity_id = self.toolset.get_entity(id=entity_id)
            connection = entity_id.get_connection(app=App.GOOGLECALENDAR)
            status = connection.status
            #status = self.connection_request.connectionStatus
            return {
                'success': True,
                'data': {
                    'status': status,
                    'message': f"Connection status: {status}"
                }
            }
        except Exception as e:
            return {
                'success': False,
                'error': str(e)
            }
    
    def generate_wrapped(self, entity_id: str) -> dict:
        try:
            current_year = datetime.now().year
            request_params = {
                "calendar_id": "primary",
                "timeMin": f"{current_year},1,1,0,0,0",
                "timeMax": f"{current_year},12,31,23,59,59",
                "single_events": True,
                "max_results": 2500,
                "order_by": "startTime"
            }
            
            events_response = self.toolset.execute_action(
                action=Action.GOOGLECALENDAR_FIND_EVENT,
                params=request_params,
                entity_id=entity_id
            )
            
            if events_response["successfull"]:
                stats = self.analyze_calendar_events(events_response)
                
                # Generate prompts for LLM analysis
                billionaire_prompt = f"""Based on these calendar stats, which tech billionaire's schedule does this most resemble and why?
                Stats:
                - {stats['total_meetings_this_year']} total meetings
                - {stats['total_time_spent']} total time in meetings
                - Most active on {stats['busiest_day']}s
                - Busiest month is {stats['busiest_month']}
                - Average meeting duration: {stats['average_meeting_duration']}
                Suggest a different billionaire each time, dont say elon.
                Return as JSON with format: {{"name": "billionaire name", "reason": "explanation"}}
                """
                
                stats_prompt = f"""Analyze these calendar stats and write a brief, insightful one-sentence comment for each metric:
                - Total meetings: {stats['total_meetings_this_year']}
                - Total time in meetings: {stats['total_time_spent']}
                - Busiest month: {stats['busiest_month']}
                - Busiest day: {stats['busiest_day']}
                - Average meeting duration: {stats['average_meeting_duration']}
                - Most common meeting time: {stats['most_common_meeting_time']}
                - Most frequent participant: {stats['most_frequent_participant']}
    
                Return as JSON with format: {{"total_meetings_comment": "", "time_spent_comment": "", "busiest_times_comment": "", "collaborator_comment": "", "habits_comment": ""}}
                """
                
                try:
                    billionaire_response = json.loads(llm.complete(billionaire_prompt).text)
                    stats_comments = json.loads(llm.complete(stats_prompt).text)
                    
                    stats["schedule_analysis"] = billionaire_response
                    stats["metric_insights"] = stats_comments
                except Exception as e:
                    print(f"Error processing LLM responses: {e}")
                    stats["schedule_analysis"] = {"name": "Unknown", "reason": "Analysis unavailable"}
                    stats["metric_insights"] = {
                        "total_meetings_comment": "",
                        "time_spent_comment": "",
                        "busiest_times_comment": "",
                        "collaborator_comment": "",
                        "habits_comment": ""
                    }
                
                return {
                    'success': True,
                    'data': stats
                }
            else:
                return {
                    'success': False,
                    'error': events_response.get("error", "Failed to fetch calendar events")
                }
            
        except Exception as e:
            return {
                'success': False,
                'error': str(e)
            }

def create_gradio_interface():
    service = CalendarService()
    
    def handle_connection(entity_id: str, redirect_url: str = None) -> str:
        return json.dumps(service.initiate_connection(entity_id, redirect_url))
    
    def check_status(entity_id: str) -> str:
        return json.dumps(service.check_connection_status(entity_id))
    
    def generate_wrapped(entity_id: str) -> str:
        return json.dumps(service.generate_wrapped(entity_id))
    
    # Create Gradio interface
    with gr.Blocks(title="Calendar Wrapped API") as interface:
        gr.Markdown("# Calendar Wrapped API")
        
        with gr.Tab("Connect"):
            entity_input = gr.Textbox(label="Entity ID")
            redirect_input = gr.Textbox(
                label="Redirect URL",
                placeholder="https://yourwebsite.com/connection/success",
                value="https://calendar-wrapped-eight.vercel.app/"
            )
            connect_btn = gr.Button("Initialize Connection")
            connect_output = gr.JSON()
            connect_btn.click(
                fn=handle_connection,
                inputs=[entity_input, redirect_input],
                outputs=connect_output
            )
            
        with gr.Tab("Check Status"):
            status_input = gr.Textbox(label="Entity ID")
            status_btn = gr.Button("Check Status")
            status_output = gr.JSON()
            status_btn.click(
                fn=check_status,
                inputs=status_input,
                outputs=status_output
            )
            
        with gr.Tab("Generate Wrapped"):
            wrapped_input = gr.Textbox(label="Entity ID")
            wrapped_btn = gr.Button("Generate Wrapped")
            wrapped_output = gr.JSON()
            wrapped_btn.click(
                fn=generate_wrapped,
                inputs=wrapped_input,
                outputs=wrapped_output
            )
    
    return interface

if __name__ == "__main__":
    interface = create_gradio_interface()
    interface.launch(server_name="0.0.0.0", server_port=7860)