Spaces:
Sleeping
Sleeping
File size: 11,418 Bytes
bb5b52d 5b1e4ca bb5b52d d62bdc3 bb5b52d 5b1e4ca bb5b52d 58d2388 bb5b52d 7edabc5 bb5b52d 3552a63 bb5b52d 62e41c2 bb5b52d 6b07e6c 55bdbe4 c546cc3 940e49e bb5b52d 22c5443 bb5b52d 3552a63 bb5b52d 58d2388 bb5b52d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
from datetime import datetime, timedelta
from collections import defaultdict, Counter
from llama_index.llms.openai import OpenAI
from composio_llamaindex import ComposioToolSet, App, Action
import gradio as gr
import os
import json
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
llm = OpenAI(model='gpt-4', api_key=os.getenv('OPENAI_API_KEY'))
class CalendarService:
def __init__(self):
self.toolset = ComposioToolSet(api_key=os.getenv('COMPOSIO_API_KEY'))
self.connection_request = None
def analyze_calendar_events(self, response_data):
"""
Analyze calendar events and return statistics about meetings.
"""
current_year = datetime.now().year
meetings = []
participants = []
meeting_times = []
total_duration = timedelta()
monthly_meetings = defaultdict(int)
daily_meetings = defaultdict(int)
events = response_data.get('data', {}).get('event_data', {}).get('event_data', [])
for event in events:
start_data = event.get('start', {})
end_data = event.get('end', {})
try:
start = datetime.fromisoformat(start_data.get('dateTime').replace('Z', '+00:00'))
end = datetime.fromisoformat(end_data.get('dateTime').replace('Z', '+00:00'))
if start.year == current_year:
duration = end - start
total_duration += duration
monthly_meetings[start.strftime('%B')] += 1
daily_meetings[start.strftime('%A')] += 1
meeting_times.append(start.strftime('%H:%M'))
if 'attendees' in event:
for attendee in event['attendees']:
if attendee.get('responseStatus') != 'declined':
participants.append(attendee.get('email'))
organizer_email = event.get('organizer', {}).get('email')
if organizer_email:
participants.append(organizer_email)
meetings.append({
'start': start,
'duration': duration,
'summary': event.get('summary', 'No Title')
})
except (ValueError, TypeError, AttributeError) as e:
print(f"Error processing event: {e}")
continue
total_meetings = len(meetings)
stats = {
"total_meetings_this_year": total_meetings
}
if total_meetings > 0:
stats.update({
"total_time_spent": str(total_duration),
"busiest_month": max(monthly_meetings.items(), key=lambda x: x[1])[0] if monthly_meetings else "N/A",
"busiest_day": max(daily_meetings.items(), key=lambda x: x[1])[0] if daily_meetings else "N/A",
"most_frequent_participant": Counter(participants).most_common(1)[0][0] if participants else "N/A",
"average_meeting_duration": str(total_duration / total_meetings),
"most_common_meeting_time": Counter(meeting_times).most_common(1)[0][0] if meeting_times else "N/A",
"monthly_breakdown": dict(monthly_meetings),
"daily_breakdown": dict(daily_meetings)
})
else:
stats.update({
"total_time_spent": "0:00:00",
"busiest_month": "N/A",
"busiest_day": "N/A",
"most_frequent_participant": "N/A",
"average_meeting_duration": "0:00:00",
"most_common_meeting_time": "N/A",
"monthly_breakdown": {},
"daily_breakdown": {}
})
return stats
def initiate_connection(self, entity_id: str, redirect_url: str = "https://calendar-wrapped-eight.vercel.app/") -> dict:
try:
self.connection_request = self.toolset.initiate_connection(
entity_id=entity_id,
app=App.GOOGLECALENDAR,
)
return {
'success': True,
'data': {
'redirect_url': self.connection_request.redirectUrl,
'message': "Please authenticate using the provided link."
}
}
except Exception as e:
return {
'success': False,
'error': str(e)
}
def check_connection_status(self, entity_id: str) -> dict:
try:
# if not self.connection_request:
# return {
# 'success': False,
# 'error': 'No active connection request found'
# }
entity_id = self.toolset.get_entity(id=entity_id)
connection = entity_id.get_connection(app=App.GOOGLECALENDAR)
status = connection.status
#status = self.connection_request.connectionStatus
return {
'success': True,
'data': {
'status': status,
'message': f"Connection status: {status}"
}
}
except Exception as e:
return {
'success': False,
'error': str(e)
}
def generate_wrapped(self, entity_id: str) -> dict:
try:
current_year = datetime.now().year
request_params = {
"calendar_id": "primary",
"timeMin": f"{current_year},1,1,0,0,0",
"timeMax": f"{current_year},12,31,23,59,59",
"single_events": True,
"max_results": 2500,
"order_by": "startTime"
}
events_response = self.toolset.execute_action(
action=Action.GOOGLECALENDAR_FIND_EVENT,
params=request_params,
entity_id=entity_id
)
if events_response["successfull"]:
stats = self.analyze_calendar_events(events_response)
# Generate prompts for LLM analysis
billionaire_prompt = f"""Based on these calendar stats, which tech billionaire's schedule does this most resemble and why?
Stats:
- {stats['total_meetings_this_year']} total meetings
- {stats['total_time_spent']} total time in meetings
- Most active on {stats['busiest_day']}s
- Busiest month is {stats['busiest_month']}
- Average meeting duration: {stats['average_meeting_duration']}
Suggest a different billionaire each time, dont say elon.
Return as JSON with format: {{"name": "billionaire name", "reason": "explanation"}}
"""
stats_prompt = f"""Analyze these calendar stats and write a brief, insightful one-sentence comment for each metric:
- Total meetings: {stats['total_meetings_this_year']}
- Total time in meetings: {stats['total_time_spent']}
- Busiest month: {stats['busiest_month']}
- Busiest day: {stats['busiest_day']}
- Average meeting duration: {stats['average_meeting_duration']}
- Most common meeting time: {stats['most_common_meeting_time']}
- Most frequent participant: {stats['most_frequent_participant']}
Return as JSON with format: {{"total_meetings_comment": "", "time_spent_comment": "", "busiest_times_comment": "", "collaborator_comment": "", "habits_comment": ""}}
"""
try:
billionaire_response = json.loads(llm.complete(billionaire_prompt).text)
stats_comments = json.loads(llm.complete(stats_prompt).text)
stats["schedule_analysis"] = billionaire_response
stats["metric_insights"] = stats_comments
except Exception as e:
print(f"Error processing LLM responses: {e}")
stats["schedule_analysis"] = {"name": "Unknown", "reason": "Analysis unavailable"}
stats["metric_insights"] = {
"total_meetings_comment": "",
"time_spent_comment": "",
"busiest_times_comment": "",
"collaborator_comment": "",
"habits_comment": ""
}
return {
'success': True,
'data': stats
}
else:
return {
'success': False,
'error': events_response.get("error", "Failed to fetch calendar events")
}
except Exception as e:
return {
'success': False,
'error': str(e)
}
def create_gradio_interface():
service = CalendarService()
def handle_connection(entity_id: str, redirect_url: str = None) -> str:
return json.dumps(service.initiate_connection(entity_id, redirect_url))
def check_status(entity_id: str) -> str:
return json.dumps(service.check_connection_status(entity_id))
def generate_wrapped(entity_id: str) -> str:
return json.dumps(service.generate_wrapped(entity_id))
# Create Gradio interface
with gr.Blocks(title="Calendar Wrapped API") as interface:
gr.Markdown("# Calendar Wrapped API")
with gr.Tab("Connect"):
entity_input = gr.Textbox(label="Entity ID")
redirect_input = gr.Textbox(
label="Redirect URL",
placeholder="https://yourwebsite.com/connection/success",
value="https://calendar-wrapped-eight.vercel.app/"
)
connect_btn = gr.Button("Initialize Connection")
connect_output = gr.JSON()
connect_btn.click(
fn=handle_connection,
inputs=[entity_input, redirect_input],
outputs=connect_output
)
with gr.Tab("Check Status"):
status_input = gr.Textbox(label="Entity ID")
status_btn = gr.Button("Check Status")
status_output = gr.JSON()
status_btn.click(
fn=check_status,
inputs=status_input,
outputs=status_output
)
with gr.Tab("Generate Wrapped"):
wrapped_input = gr.Textbox(label="Entity ID")
wrapped_btn = gr.Button("Generate Wrapped")
wrapped_output = gr.JSON()
wrapped_btn.click(
fn=generate_wrapped,
inputs=wrapped_input,
outputs=wrapped_output
)
return interface
if __name__ == "__main__":
interface = create_gradio_interface()
interface.launch(server_name="0.0.0.0", server_port=7860) |